only-stats should never create visual gears. and lua should never rely on visual gears being created. critical is just to help ensure ones important to gameplay don't get lost in fast-forward
{-
Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
-}
module OfficialServer.Glicko2 where
data RatingData = RatingData {
ratingValue
, rD
, volatility :: Double
}
data GameData = GameData {
opponentRating :: RatingData,
gameScore :: Double
}
τ, ε :: Double
τ = 0.2
ε = 0.000001
g_φ :: Double -> Double
g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)
calcE :: RatingData -> GameData -> (Double, Double, Double)
calcE oldRating (GameData oppRating s) = (
1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
, g_φᵢ
, s
)
where
μ = (ratingValue oldRating - 1500) / 173.7178
φ = rD oldRating / 173.7178
μᵢ = (ratingValue oppRating - 1500) / 173.7178
φᵢ = rD oppRating / 173.7178
g_φᵢ = g_φ φᵢ
calcNewRating :: RatingData -> [GameData] -> (Int, RatingData)
calcNewRating oldRating [] = (0, RatingData (ratingValue oldRating) (173.7178 * sqrt (φ ^ 2 + σ ^ 2)) σ)
where
φ = rD oldRating / 173.7178
σ = volatility oldRating
calcNewRating oldRating games = (length games, RatingData (173.7178 * μ' + 1500) (173.7178 * sqrt φ'sqr) σ')
where
_Es = map (calcE oldRating) games
υ = 1 / sum (map υ_p _Es)
υ_p (_Eᵢ, g_φᵢ, _) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
_Δ = υ * part1
part1 = sum (map _Δ_p _Es)
_Δ_p (_Eᵢ, g_φᵢ, sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)
μ = (ratingValue oldRating - 1500) / 173.7178
φ = rD oldRating / 173.7178
σ = volatility oldRating
a = log (σ ^ 2)
f :: Double -> Double
f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2
_A = a
_B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
fA = f _A
fB = f _B
σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)
φ'sqr = 1 / (1 / (φ ^ 2 + σ' ^ 2) + 1 / υ)
μ' = μ + φ'sqr * part1