gameServer/OfficialServer/Glicko2.hs
author Wuzzy <almikes@aol.com>
Sun, 08 Oct 2017 20:24:58 +0200
changeset 12681 2e6dcd97f085
parent 11395 36e1bbb6ecea
permissions -rw-r--r--
No longer jiggle sticky mines if using portable portal device This fixes the sticky mine sound playing when using portal gun while any sticky mine is placed on ground. We decided that placed sticky mines can't be teleported.

{-
    Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
-}

module OfficialServer.Glicko2 where

data RatingData = RatingData {
        ratingValue
        , rD
        , volatility :: Double
    }
data GameData = GameData {
        opponentRating :: RatingData,
        gameScore :: Double
    }

τ, ε :: Double
τ = 0.2
ε = 0.000001

g_φ :: Double -> Double
g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)

calcE :: RatingData -> GameData -> (Double, Double, Double)
calcE oldRating (GameData oppRating s) = (
    1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
    , g_φᵢ
    , s
    )
    where
        μ = (ratingValue oldRating - 1500) / 173.7178
        φ = rD oldRating / 173.7178
        μᵢ = (ratingValue oppRating - 1500) / 173.7178
        φᵢ = rD oppRating / 173.7178
        g_φᵢ = g_φ φᵢ


calcNewRating :: RatingData -> [GameData] -> (Int, RatingData)
calcNewRating oldRating [] = (0, RatingData (ratingValue oldRating) (173.7178 * sqrt (φ ^ 2 + σ ^ 2)) σ)
    where
        φ = rD oldRating / 173.7178
        σ = volatility oldRating

calcNewRating oldRating games = (length games, RatingData (173.7178 * μ' + 1500) (173.7178 * sqrt φ'sqr) σ')
    where
        _Es = map (calcE oldRating) games
        υ = 1 / sum (map υ_p _Es)
        υ_p (_Eᵢ, g_φᵢ, _) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
        _Δ = υ * part1
        part1 = sum (map _Δ_p _Es)
        _Δ_p (_Eᵢ, g_φᵢ, sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)

        μ = (ratingValue oldRating - 1500) / 173.7178
        φ = rD oldRating / 173.7178
        σ = volatility oldRating

        a = log (σ ^ 2)
        f :: Double -> Double
        f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2

        _A = a
        _B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
        fA = f _A
        fB = f _B
        σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
        step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
                                     if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)

        φ'sqr = 1 / (1 / (φ ^ 2 + σ' ^ 2) + 1 / υ)
        μ' = μ + φ'sqr * part1