author | Wuzzy <almikes@aol.com> |
Mon, 10 Apr 2017 20:56:01 +0200 | |
changeset 12221 | 5b525d041fb4 |
parent 11802 | d9d48143dcbe |
child 13504 | c41b16ac2e05 |
permissions | -rw-r--r-- |
(* * Hedgewars, a free turn based strategy game * Copyright (c) 2004-2012 Andrey Korotaev <unC0Rr@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *) {$INCLUDE "options.inc"} unit uMatrix; interface uses uTypes {$IFNDEF PAS2C}, gl{$ENDIF}; const MATRIX_MODELVIEW:Integer = 0; MATRIX_PROJECTION:Integer = 1; procedure MatrixLoadIdentity(out Result: TMatrix4x4f); procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f); procedure hglMatrixMode(t: Integer); procedure hglLoadIdentity(); procedure hglPushMatrix(); procedure hglPopMatrix(); procedure hglMVP(var res : TMatrix4x4f); procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat); procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat); procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat); procedure initModule(); procedure freeModule(); implementation uses uDebug; const MATRIX_STACK_SIZE = 10; type TMatrixStack = record top:Integer; stack: array[0..9] of TMatrix4x4f; end; var MatrixStacks : array[0..1] of TMatrixStack; CurMatrix: integer; procedure MatrixLoadIdentity(out Result: TMatrix4x4f); begin Result[0,0]:= 1.0; Result[1,0]:=0.0; Result[2,0]:=0.0; Result[3,0]:=0.0; Result[0,1]:= 0.0; Result[1,1]:=1.0; Result[2,1]:=0.0; Result[3,1]:=0.0; Result[0,2]:= 0.0; Result[1,2]:=0.0; Result[2,2]:=1.0; Result[3,2]:=0.0; Result[0,3]:= 0.0; Result[1,3]:=0.0; Result[2,3]:=0.0; Result[3,3]:=1.0; end; procedure hglMatrixMode(t: Integer); begin CurMatrix := t; end; procedure hglLoadIdentity(); begin MatrixLoadIdentity(MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top]); end; procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat); var m:TMatrix4x4f; t:TMatrix4x4f; begin m[0,0]:=x;m[1,0]:=0;m[2,0]:=0;m[3,0]:=0; m[0,1]:=0;m[1,1]:=y;m[2,1]:=0;m[3,1]:=0; m[0,2]:=0;m[1,2]:=0;m[2,2]:=z;m[3,2]:=0; m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1; MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m); MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t; end; procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat); var m:TMatrix4x4f; t:TMatrix4x4f; begin m[0,0]:=1;m[1,0]:=0;m[2,0]:=0;m[3,0]:=x; m[0,1]:=0;m[1,1]:=1;m[2,1]:=0;m[3,1]:=y; m[0,2]:=0;m[1,2]:=0;m[2,2]:=1;m[3,2]:=z; m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1; MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m); MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t; end; procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat); var m:TMatrix4x4f; t:TMatrix4x4f; c:GLfloat; s:GLfloat; xn, yn, zn:GLfloat; l:GLfloat; begin a:=a * 3.14159265368 / 180; c:=cos(a); s:=sin(a); l := 1.0 / sqrt(x * x + y * y + z * z); xn := x * l; yn := y * l; zn := z * l; m[0,0]:=c + xn * xn * (1 - c); m[1,0]:=xn * yn * (1 - c) - zn * s; m[2,0]:=xn * zn * (1 - c) + yn * s; m[3,0]:=0; m[0,1]:=yn * xn * (1 - c) + zn * s; m[1,1]:=c + yn * yn * (1 - c); m[2,1]:=yn * zn * (1 - c) - xn * s; m[3,1]:=0; m[0,2]:=zn * xn * (1 - c) - yn * s; m[1,2]:=zn * yn * (1 - c) + xn * s; m[2,2]:=c + zn * zn * (1 - c); m[3,2]:=0; m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1; MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m); MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t; end; procedure hglMVP(var res: TMatrix4x4f); begin MatrixMultiply(res, MatrixStacks[MATRIX_PROJECTION].stack[MatrixStacks[MATRIX_PROJECTION].top], MatrixStacks[MATRIX_MODELVIEW].stack[MatrixStacks[MATRIX_MODELVIEW].top]); end; procedure hglPushMatrix(); var t: Integer; begin t := MatrixStacks[CurMatrix].top; MatrixStacks[CurMatrix].stack[t + 1] := MatrixStacks[CurMatrix].stack[t]; inc(t); MatrixStacks[CurMatrix].top := t; end; procedure hglPopMatrix(); var t: Integer; begin t := MatrixStacks[CurMatrix].top; dec(t); MatrixStacks[CurMatrix].top := t; end; procedure initModule(); begin MatrixStacks[MATRIX_MODELVIEW].top := 0; MatrixStacks[MATRIX_Projection].top := 0; MatrixLoadIdentity(MatrixStacks[MATRIX_MODELVIEW].stack[0]); MatrixLoadIdentity(MatrixStacks[MATRIX_PROJECTION].stack[0]); end; procedure freeModule(); begin end; procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f); var test: TMatrix4x4f; i, j: Integer; error: boolean; begin Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3]; Result[0,1]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3]; Result[0,2]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3]; Result[0,3]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3]; Result[1,0]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3]; Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3]; Result[1,2]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3]; Result[1,3]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3]; Result[2,0]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3]; Result[2,1]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3]; Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3]; Result[2,3]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3]; Result[3,0]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3]; Result[3,1]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3]; Result[3,2]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3]; Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3]; { Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3]; Result[0,1]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3]; Result[0,2]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3]; Result[0,3]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3]; Result[1,0]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3]; Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3]; Result[1,2]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3]; Result[1,3]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3]; Result[2,0]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3]; Result[2,1]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3]; Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3]; Result[2,3]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3]; Result[3,0]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3]; Result[3,1]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3]; Result[3,2]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3]; Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3]; } glPushMatrix; glLoadMatrixf(@lhs[0, 0]); glMultMatrixf(@rhs[0, 0]); glGetFloatv(GL_MODELVIEW_MATRIX, @test[0, 0]); glPopMatrix; error:=false; for i:=0 to 3 do for j:=0 to 3 do if Abs(test[i, j] - Result[i, j]) > 0.000001 then error:=true; {$IFNDEF PAS2C} if error then begin writeln('shall:'); for i:=0 to 3 do begin for j:=0 to 3 do write(test[i, j]); writeln; end; writeln('is:'); for i:=0 to 3 do begin for j:=0 to 3 do write(Result[i, j]); writeln; end; checkFails(false, 'error in matrix multiplication?!', true); end; {$ENDIF} end; end.