Simplify the hat format for unanimated hats
For simple hats which are not animated, a single 32×32 image is now enough.
For simple clan hats, use 64×32 with the color overlay at the right.
(*
* Hedgewars, a free turn based strategy game
* Copyright (c) 2004-2012 Andrey Korotaev <unC0Rr@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
{$INCLUDE "options.inc"}
unit uMatrix;
interface
uses uTypes {$IFNDEF PAS2C}, gl{$ENDIF};
const
MATRIX_MODELVIEW:Integer = 0;
MATRIX_PROJECTION:Integer = 1;
procedure MatrixLoadIdentity(out Result: TMatrix4x4f);
procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f);
procedure hglMatrixMode(t: Integer);
procedure hglLoadIdentity();
procedure hglPushMatrix();
procedure hglPopMatrix();
procedure hglMVP(var res : TMatrix4x4f);
procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat);
procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat);
procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat);
procedure initModule();
procedure freeModule();
implementation
uses uDebug;
const
MATRIX_STACK_SIZE = 10;
type
TMatrixStack = record
top:Integer;
stack: array[0..9] of TMatrix4x4f;
end;
var
MatrixStacks : array[0..1] of TMatrixStack;
CurMatrix: integer;
procedure MatrixLoadIdentity(out Result: TMatrix4x4f);
begin
Result[0,0]:= 1.0; Result[1,0]:=0.0; Result[2,0]:=0.0; Result[3,0]:=0.0;
Result[0,1]:= 0.0; Result[1,1]:=1.0; Result[2,1]:=0.0; Result[3,1]:=0.0;
Result[0,2]:= 0.0; Result[1,2]:=0.0; Result[2,2]:=1.0; Result[3,2]:=0.0;
Result[0,3]:= 0.0; Result[1,3]:=0.0; Result[2,3]:=0.0; Result[3,3]:=1.0;
end;
procedure hglMatrixMode(t: Integer);
begin
CurMatrix := t;
end;
procedure hglLoadIdentity();
begin
MatrixLoadIdentity(MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top]);
end;
procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat);
var
m:TMatrix4x4f;
t:TMatrix4x4f;
begin
m[0,0]:=x;m[1,0]:=0;m[2,0]:=0;m[3,0]:=0;
m[0,1]:=0;m[1,1]:=y;m[2,1]:=0;m[3,1]:=0;
m[0,2]:=0;m[1,2]:=0;m[2,2]:=z;m[3,2]:=0;
m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;
MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;
procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat);
var
m:TMatrix4x4f;
t:TMatrix4x4f;
begin
m[0,0]:=1;m[1,0]:=0;m[2,0]:=0;m[3,0]:=x;
m[0,1]:=0;m[1,1]:=1;m[2,1]:=0;m[3,1]:=y;
m[0,2]:=0;m[1,2]:=0;m[2,2]:=1;m[3,2]:=z;
m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;
MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;
procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat);
var
m:TMatrix4x4f;
t:TMatrix4x4f;
c:GLfloat;
s:GLfloat;
xn, yn, zn:GLfloat;
l:GLfloat;
begin
a:=a * 3.14159265368 / 180;
c:=cos(a);
s:=sin(a);
l := 1.0 / sqrt(x * x + y * y + z * z);
xn := x * l;
yn := y * l;
zn := z * l;
m[0,0]:=c + xn * xn * (1 - c);
m[1,0]:=xn * yn * (1 - c) - zn * s;
m[2,0]:=xn * zn * (1 - c) + yn * s;
m[3,0]:=0;
m[0,1]:=yn * xn * (1 - c) + zn * s;
m[1,1]:=c + yn * yn * (1 - c);
m[2,1]:=yn * zn * (1 - c) - xn * s;
m[3,1]:=0;
m[0,2]:=zn * xn * (1 - c) - yn * s;
m[1,2]:=zn * yn * (1 - c) + xn * s;
m[2,2]:=c + zn * zn * (1 - c);
m[3,2]:=0;
m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;
MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;
procedure hglMVP(var res: TMatrix4x4f);
begin
MatrixMultiply(res,
MatrixStacks[MATRIX_PROJECTION].stack[MatrixStacks[MATRIX_PROJECTION].top],
MatrixStacks[MATRIX_MODELVIEW].stack[MatrixStacks[MATRIX_MODELVIEW].top]);
end;
procedure hglPushMatrix();
var
t: Integer;
begin
t := MatrixStacks[CurMatrix].top;
MatrixStacks[CurMatrix].stack[t + 1] := MatrixStacks[CurMatrix].stack[t];
inc(t);
MatrixStacks[CurMatrix].top := t;
end;
procedure hglPopMatrix();
var
t: Integer;
begin
t := MatrixStacks[CurMatrix].top;
dec(t);
MatrixStacks[CurMatrix].top := t;
end;
procedure initModule();
begin
MatrixStacks[MATRIX_MODELVIEW].top := 0;
MatrixStacks[MATRIX_Projection].top := 0;
MatrixLoadIdentity(MatrixStacks[MATRIX_MODELVIEW].stack[0]);
MatrixLoadIdentity(MatrixStacks[MATRIX_PROJECTION].stack[0]);
end;
procedure freeModule();
begin
end;
procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f);
var
test: TMatrix4x4f;
i, j: Integer;
error: boolean;
begin
Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3];
Result[0,1]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3];
Result[0,2]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3];
Result[0,3]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3];
Result[1,0]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3];
Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3];
Result[1,2]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3];
Result[1,3]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3];
Result[2,0]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3];
Result[2,1]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3];
Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3];
Result[2,3]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3];
Result[3,0]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3];
Result[3,1]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3];
Result[3,2]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3];
Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3];
{
Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3];
Result[0,1]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3];
Result[0,2]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3];
Result[0,3]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3];
Result[1,0]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3];
Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3];
Result[1,2]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3];
Result[1,3]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3];
Result[2,0]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3];
Result[2,1]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3];
Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3];
Result[2,3]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3];
Result[3,0]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3];
Result[3,1]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3];
Result[3,2]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3];
Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3];
}
glPushMatrix;
glLoadMatrixf(@lhs[0, 0]);
glMultMatrixf(@rhs[0, 0]);
glGetFloatv(GL_MODELVIEW_MATRIX, @test[0, 0]);
glPopMatrix;
error:=false;
for i:=0 to 3 do
for j:=0 to 3 do
if Abs(test[i, j] - Result[i, j]) > 0.000001 then
error:=true;
{$IFNDEF PAS2C}
if error then
begin
writeln('shall:');
for i:=0 to 3 do
begin
for j:=0 to 3 do
write(test[i, j]);
writeln;
end;
writeln('is:');
for i:=0 to 3 do
begin
for j:=0 to 3 do
write(Result[i, j]);
writeln;
end;
checkFails(false, 'error in matrix multiplication?!', true);
end;
{$ENDIF}
end;
end.