|
1 /* |
|
2 ** $Id: ltable.c,v 2.32.1.2 2007/12/28 15:32:23 roberto Exp $ |
|
3 ** Lua tables (hash) |
|
4 ** See Copyright Notice in lua.h |
|
5 */ |
|
6 |
|
7 |
|
8 /* |
|
9 ** Implementation of tables (aka arrays, objects, or hash tables). |
|
10 ** Tables keep its elements in two parts: an array part and a hash part. |
|
11 ** Non-negative integer keys are all candidates to be kept in the array |
|
12 ** part. The actual size of the array is the largest `n' such that at |
|
13 ** least half the slots between 0 and n are in use. |
|
14 ** Hash uses a mix of chained scatter table with Brent's variation. |
|
15 ** A main invariant of these tables is that, if an element is not |
|
16 ** in its main position (i.e. the `original' position that its hash gives |
|
17 ** to it), then the colliding element is in its own main position. |
|
18 ** Hence even when the load factor reaches 100%, performance remains good. |
|
19 */ |
|
20 |
|
21 #include <math.h> |
|
22 #include <string.h> |
|
23 |
|
24 #define ltable_c |
|
25 #define LUA_CORE |
|
26 |
|
27 #include "lua.h" |
|
28 |
|
29 #include "ldebug.h" |
|
30 #include "ldo.h" |
|
31 #include "lgc.h" |
|
32 #include "lmem.h" |
|
33 #include "lobject.h" |
|
34 #include "lstate.h" |
|
35 #include "ltable.h" |
|
36 |
|
37 |
|
38 /* |
|
39 ** max size of array part is 2^MAXBITS |
|
40 */ |
|
41 #if LUAI_BITSINT > 26 |
|
42 #define MAXBITS 26 |
|
43 #else |
|
44 #define MAXBITS (LUAI_BITSINT-2) |
|
45 #endif |
|
46 |
|
47 #define MAXASIZE (1 << MAXBITS) |
|
48 |
|
49 |
|
50 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
|
51 |
|
52 #define hashstr(t,str) hashpow2(t, (str)->tsv.hash) |
|
53 #define hashboolean(t,p) hashpow2(t, p) |
|
54 |
|
55 |
|
56 /* |
|
57 ** for some types, it is better to avoid modulus by power of 2, as |
|
58 ** they tend to have many 2 factors. |
|
59 */ |
|
60 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
|
61 |
|
62 |
|
63 #define hashpointer(t,p) hashmod(t, IntPoint(p)) |
|
64 |
|
65 |
|
66 /* |
|
67 ** number of ints inside a lua_Number |
|
68 */ |
|
69 #define numints cast_int(sizeof(lua_Number)/sizeof(int)) |
|
70 |
|
71 |
|
72 |
|
73 #define dummynode (&dummynode_) |
|
74 |
|
75 static const Node dummynode_ = { |
|
76 {{NULL}, LUA_TNIL}, /* value */ |
|
77 {{{NULL}, LUA_TNIL, NULL}} /* key */ |
|
78 }; |
|
79 |
|
80 |
|
81 /* |
|
82 ** hash for lua_Numbers |
|
83 */ |
|
84 static Node *hashnum (const Table *t, lua_Number n) { |
|
85 unsigned int a[numints]; |
|
86 int i; |
|
87 if (luai_numeq(n, 0)) /* avoid problems with -0 */ |
|
88 return gnode(t, 0); |
|
89 memcpy(a, &n, sizeof(a)); |
|
90 for (i = 1; i < numints; i++) a[0] += a[i]; |
|
91 return hashmod(t, a[0]); |
|
92 } |
|
93 |
|
94 |
|
95 |
|
96 /* |
|
97 ** returns the `main' position of an element in a table (that is, the index |
|
98 ** of its hash value) |
|
99 */ |
|
100 static Node *mainposition (const Table *t, const TValue *key) { |
|
101 switch (ttype(key)) { |
|
102 case LUA_TNUMBER: |
|
103 return hashnum(t, nvalue(key)); |
|
104 case LUA_TSTRING: |
|
105 return hashstr(t, rawtsvalue(key)); |
|
106 case LUA_TBOOLEAN: |
|
107 return hashboolean(t, bvalue(key)); |
|
108 case LUA_TLIGHTUSERDATA: |
|
109 return hashpointer(t, pvalue(key)); |
|
110 default: |
|
111 return hashpointer(t, gcvalue(key)); |
|
112 } |
|
113 } |
|
114 |
|
115 |
|
116 /* |
|
117 ** returns the index for `key' if `key' is an appropriate key to live in |
|
118 ** the array part of the table, -1 otherwise. |
|
119 */ |
|
120 static int arrayindex (const TValue *key) { |
|
121 if (ttisnumber(key)) { |
|
122 lua_Number n = nvalue(key); |
|
123 int k; |
|
124 lua_number2int(k, n); |
|
125 if (luai_numeq(cast_num(k), n)) |
|
126 return k; |
|
127 } |
|
128 return -1; /* `key' did not match some condition */ |
|
129 } |
|
130 |
|
131 |
|
132 /* |
|
133 ** returns the index of a `key' for table traversals. First goes all |
|
134 ** elements in the array part, then elements in the hash part. The |
|
135 ** beginning of a traversal is signalled by -1. |
|
136 */ |
|
137 static int findindex (lua_State *L, Table *t, StkId key) { |
|
138 int i; |
|
139 if (ttisnil(key)) return -1; /* first iteration */ |
|
140 i = arrayindex(key); |
|
141 if (0 < i && i <= t->sizearray) /* is `key' inside array part? */ |
|
142 return i-1; /* yes; that's the index (corrected to C) */ |
|
143 else { |
|
144 Node *n = mainposition(t, key); |
|
145 do { /* check whether `key' is somewhere in the chain */ |
|
146 /* key may be dead already, but it is ok to use it in `next' */ |
|
147 if (luaO_rawequalObj(key2tval(n), key) || |
|
148 (ttype(gkey(n)) == LUA_TDEADKEY && iscollectable(key) && |
|
149 gcvalue(gkey(n)) == gcvalue(key))) { |
|
150 i = cast_int(n - gnode(t, 0)); /* key index in hash table */ |
|
151 /* hash elements are numbered after array ones */ |
|
152 return i + t->sizearray; |
|
153 } |
|
154 else n = gnext(n); |
|
155 } while (n); |
|
156 luaG_runerror(L, "invalid key to " LUA_QL("next")); /* key not found */ |
|
157 return 0; /* to avoid warnings */ |
|
158 } |
|
159 } |
|
160 |
|
161 |
|
162 int luaH_next (lua_State *L, Table *t, StkId key) { |
|
163 int i = findindex(L, t, key); /* find original element */ |
|
164 for (i++; i < t->sizearray; i++) { /* try first array part */ |
|
165 if (!ttisnil(&t->array[i])) { /* a non-nil value? */ |
|
166 setnvalue(key, cast_num(i+1)); |
|
167 setobj2s(L, key+1, &t->array[i]); |
|
168 return 1; |
|
169 } |
|
170 } |
|
171 for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */ |
|
172 if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ |
|
173 setobj2s(L, key, key2tval(gnode(t, i))); |
|
174 setobj2s(L, key+1, gval(gnode(t, i))); |
|
175 return 1; |
|
176 } |
|
177 } |
|
178 return 0; /* no more elements */ |
|
179 } |
|
180 |
|
181 |
|
182 /* |
|
183 ** {============================================================= |
|
184 ** Rehash |
|
185 ** ============================================================== |
|
186 */ |
|
187 |
|
188 |
|
189 static int computesizes (int nums[], int *narray) { |
|
190 int i; |
|
191 int twotoi; /* 2^i */ |
|
192 int a = 0; /* number of elements smaller than 2^i */ |
|
193 int na = 0; /* number of elements to go to array part */ |
|
194 int n = 0; /* optimal size for array part */ |
|
195 for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) { |
|
196 if (nums[i] > 0) { |
|
197 a += nums[i]; |
|
198 if (a > twotoi/2) { /* more than half elements present? */ |
|
199 n = twotoi; /* optimal size (till now) */ |
|
200 na = a; /* all elements smaller than n will go to array part */ |
|
201 } |
|
202 } |
|
203 if (a == *narray) break; /* all elements already counted */ |
|
204 } |
|
205 *narray = n; |
|
206 lua_assert(*narray/2 <= na && na <= *narray); |
|
207 return na; |
|
208 } |
|
209 |
|
210 |
|
211 static int countint (const TValue *key, int *nums) { |
|
212 int k = arrayindex(key); |
|
213 if (0 < k && k <= MAXASIZE) { /* is `key' an appropriate array index? */ |
|
214 nums[ceillog2(k)]++; /* count as such */ |
|
215 return 1; |
|
216 } |
|
217 else |
|
218 return 0; |
|
219 } |
|
220 |
|
221 |
|
222 static int numusearray (const Table *t, int *nums) { |
|
223 int lg; |
|
224 int ttlg; /* 2^lg */ |
|
225 int ause = 0; /* summation of `nums' */ |
|
226 int i = 1; /* count to traverse all array keys */ |
|
227 for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) { /* for each slice */ |
|
228 int lc = 0; /* counter */ |
|
229 int lim = ttlg; |
|
230 if (lim > t->sizearray) { |
|
231 lim = t->sizearray; /* adjust upper limit */ |
|
232 if (i > lim) |
|
233 break; /* no more elements to count */ |
|
234 } |
|
235 /* count elements in range (2^(lg-1), 2^lg] */ |
|
236 for (; i <= lim; i++) { |
|
237 if (!ttisnil(&t->array[i-1])) |
|
238 lc++; |
|
239 } |
|
240 nums[lg] += lc; |
|
241 ause += lc; |
|
242 } |
|
243 return ause; |
|
244 } |
|
245 |
|
246 |
|
247 static int numusehash (const Table *t, int *nums, int *pnasize) { |
|
248 int totaluse = 0; /* total number of elements */ |
|
249 int ause = 0; /* summation of `nums' */ |
|
250 int i = sizenode(t); |
|
251 while (i--) { |
|
252 Node *n = &t->node[i]; |
|
253 if (!ttisnil(gval(n))) { |
|
254 ause += countint(key2tval(n), nums); |
|
255 totaluse++; |
|
256 } |
|
257 } |
|
258 *pnasize += ause; |
|
259 return totaluse; |
|
260 } |
|
261 |
|
262 |
|
263 static void setarrayvector (lua_State *L, Table *t, int size) { |
|
264 int i; |
|
265 luaM_reallocvector(L, t->array, t->sizearray, size, TValue); |
|
266 for (i=t->sizearray; i<size; i++) |
|
267 setnilvalue(&t->array[i]); |
|
268 t->sizearray = size; |
|
269 } |
|
270 |
|
271 |
|
272 static void setnodevector (lua_State *L, Table *t, int size) { |
|
273 int lsize; |
|
274 if (size == 0) { /* no elements to hash part? */ |
|
275 t->node = cast(Node *, dummynode); /* use common `dummynode' */ |
|
276 lsize = 0; |
|
277 } |
|
278 else { |
|
279 int i; |
|
280 lsize = ceillog2(size); |
|
281 if (lsize > MAXBITS) |
|
282 luaG_runerror(L, "table overflow"); |
|
283 size = twoto(lsize); |
|
284 t->node = luaM_newvector(L, size, Node); |
|
285 for (i=0; i<size; i++) { |
|
286 Node *n = gnode(t, i); |
|
287 gnext(n) = NULL; |
|
288 setnilvalue(gkey(n)); |
|
289 setnilvalue(gval(n)); |
|
290 } |
|
291 } |
|
292 t->lsizenode = cast_byte(lsize); |
|
293 t->lastfree = gnode(t, size); /* all positions are free */ |
|
294 } |
|
295 |
|
296 |
|
297 static void resize (lua_State *L, Table *t, int nasize, int nhsize) { |
|
298 int i; |
|
299 int oldasize = t->sizearray; |
|
300 int oldhsize = t->lsizenode; |
|
301 Node *nold = t->node; /* save old hash ... */ |
|
302 if (nasize > oldasize) /* array part must grow? */ |
|
303 setarrayvector(L, t, nasize); |
|
304 /* create new hash part with appropriate size */ |
|
305 setnodevector(L, t, nhsize); |
|
306 if (nasize < oldasize) { /* array part must shrink? */ |
|
307 t->sizearray = nasize; |
|
308 /* re-insert elements from vanishing slice */ |
|
309 for (i=nasize; i<oldasize; i++) { |
|
310 if (!ttisnil(&t->array[i])) |
|
311 setobjt2t(L, luaH_setnum(L, t, i+1), &t->array[i]); |
|
312 } |
|
313 /* shrink array */ |
|
314 luaM_reallocvector(L, t->array, oldasize, nasize, TValue); |
|
315 } |
|
316 /* re-insert elements from hash part */ |
|
317 for (i = twoto(oldhsize) - 1; i >= 0; i--) { |
|
318 Node *old = nold+i; |
|
319 if (!ttisnil(gval(old))) |
|
320 setobjt2t(L, luaH_set(L, t, key2tval(old)), gval(old)); |
|
321 } |
|
322 if (nold != dummynode) |
|
323 luaM_freearray(L, nold, twoto(oldhsize), Node); /* free old array */ |
|
324 } |
|
325 |
|
326 |
|
327 void luaH_resizearray (lua_State *L, Table *t, int nasize) { |
|
328 int nsize = (t->node == dummynode) ? 0 : sizenode(t); |
|
329 resize(L, t, nasize, nsize); |
|
330 } |
|
331 |
|
332 |
|
333 static void rehash (lua_State *L, Table *t, const TValue *ek) { |
|
334 int nasize, na; |
|
335 int nums[MAXBITS+1]; /* nums[i] = number of keys between 2^(i-1) and 2^i */ |
|
336 int i; |
|
337 int totaluse; |
|
338 for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */ |
|
339 nasize = numusearray(t, nums); /* count keys in array part */ |
|
340 totaluse = nasize; /* all those keys are integer keys */ |
|
341 totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */ |
|
342 /* count extra key */ |
|
343 nasize += countint(ek, nums); |
|
344 totaluse++; |
|
345 /* compute new size for array part */ |
|
346 na = computesizes(nums, &nasize); |
|
347 /* resize the table to new computed sizes */ |
|
348 resize(L, t, nasize, totaluse - na); |
|
349 } |
|
350 |
|
351 |
|
352 |
|
353 /* |
|
354 ** }============================================================= |
|
355 */ |
|
356 |
|
357 |
|
358 Table *luaH_new (lua_State *L, int narray, int nhash) { |
|
359 Table *t = luaM_new(L, Table); |
|
360 luaC_link(L, obj2gco(t), LUA_TTABLE); |
|
361 t->metatable = NULL; |
|
362 t->flags = cast_byte(~0); |
|
363 /* temporary values (kept only if some malloc fails) */ |
|
364 t->array = NULL; |
|
365 t->sizearray = 0; |
|
366 t->lsizenode = 0; |
|
367 t->node = cast(Node *, dummynode); |
|
368 setarrayvector(L, t, narray); |
|
369 setnodevector(L, t, nhash); |
|
370 return t; |
|
371 } |
|
372 |
|
373 |
|
374 void luaH_free (lua_State *L, Table *t) { |
|
375 if (t->node != dummynode) |
|
376 luaM_freearray(L, t->node, sizenode(t), Node); |
|
377 luaM_freearray(L, t->array, t->sizearray, TValue); |
|
378 luaM_free(L, t); |
|
379 } |
|
380 |
|
381 |
|
382 static Node *getfreepos (Table *t) { |
|
383 while (t->lastfree-- > t->node) { |
|
384 if (ttisnil(gkey(t->lastfree))) |
|
385 return t->lastfree; |
|
386 } |
|
387 return NULL; /* could not find a free place */ |
|
388 } |
|
389 |
|
390 |
|
391 |
|
392 /* |
|
393 ** inserts a new key into a hash table; first, check whether key's main |
|
394 ** position is free. If not, check whether colliding node is in its main |
|
395 ** position or not: if it is not, move colliding node to an empty place and |
|
396 ** put new key in its main position; otherwise (colliding node is in its main |
|
397 ** position), new key goes to an empty position. |
|
398 */ |
|
399 static TValue *newkey (lua_State *L, Table *t, const TValue *key) { |
|
400 Node *mp = mainposition(t, key); |
|
401 if (!ttisnil(gval(mp)) || mp == dummynode) { |
|
402 Node *othern; |
|
403 Node *n = getfreepos(t); /* get a free place */ |
|
404 if (n == NULL) { /* cannot find a free place? */ |
|
405 rehash(L, t, key); /* grow table */ |
|
406 return luaH_set(L, t, key); /* re-insert key into grown table */ |
|
407 } |
|
408 lua_assert(n != dummynode); |
|
409 othern = mainposition(t, key2tval(mp)); |
|
410 if (othern != mp) { /* is colliding node out of its main position? */ |
|
411 /* yes; move colliding node into free position */ |
|
412 while (gnext(othern) != mp) othern = gnext(othern); /* find previous */ |
|
413 gnext(othern) = n; /* redo the chain with `n' in place of `mp' */ |
|
414 *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
|
415 gnext(mp) = NULL; /* now `mp' is free */ |
|
416 setnilvalue(gval(mp)); |
|
417 } |
|
418 else { /* colliding node is in its own main position */ |
|
419 /* new node will go into free position */ |
|
420 gnext(n) = gnext(mp); /* chain new position */ |
|
421 gnext(mp) = n; |
|
422 mp = n; |
|
423 } |
|
424 } |
|
425 gkey(mp)->value = key->value; gkey(mp)->tt = key->tt; |
|
426 luaC_barriert(L, t, key); |
|
427 lua_assert(ttisnil(gval(mp))); |
|
428 return gval(mp); |
|
429 } |
|
430 |
|
431 |
|
432 /* |
|
433 ** search function for integers |
|
434 */ |
|
435 const TValue *luaH_getnum (Table *t, int key) { |
|
436 /* (1 <= key && key <= t->sizearray) */ |
|
437 if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray)) |
|
438 return &t->array[key-1]; |
|
439 else { |
|
440 lua_Number nk = cast_num(key); |
|
441 Node *n = hashnum(t, nk); |
|
442 do { /* check whether `key' is somewhere in the chain */ |
|
443 if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk)) |
|
444 return gval(n); /* that's it */ |
|
445 else n = gnext(n); |
|
446 } while (n); |
|
447 return luaO_nilobject; |
|
448 } |
|
449 } |
|
450 |
|
451 |
|
452 /* |
|
453 ** search function for strings |
|
454 */ |
|
455 const TValue *luaH_getstr (Table *t, TString *key) { |
|
456 Node *n = hashstr(t, key); |
|
457 do { /* check whether `key' is somewhere in the chain */ |
|
458 if (ttisstring(gkey(n)) && rawtsvalue(gkey(n)) == key) |
|
459 return gval(n); /* that's it */ |
|
460 else n = gnext(n); |
|
461 } while (n); |
|
462 return luaO_nilobject; |
|
463 } |
|
464 |
|
465 |
|
466 /* |
|
467 ** main search function |
|
468 */ |
|
469 const TValue *luaH_get (Table *t, const TValue *key) { |
|
470 switch (ttype(key)) { |
|
471 case LUA_TNIL: return luaO_nilobject; |
|
472 case LUA_TSTRING: return luaH_getstr(t, rawtsvalue(key)); |
|
473 case LUA_TNUMBER: { |
|
474 int k; |
|
475 lua_Number n = nvalue(key); |
|
476 lua_number2int(k, n); |
|
477 if (luai_numeq(cast_num(k), nvalue(key))) /* index is int? */ |
|
478 return luaH_getnum(t, k); /* use specialized version */ |
|
479 /* else go through */ |
|
480 } |
|
481 default: { |
|
482 Node *n = mainposition(t, key); |
|
483 do { /* check whether `key' is somewhere in the chain */ |
|
484 if (luaO_rawequalObj(key2tval(n), key)) |
|
485 return gval(n); /* that's it */ |
|
486 else n = gnext(n); |
|
487 } while (n); |
|
488 return luaO_nilobject; |
|
489 } |
|
490 } |
|
491 } |
|
492 |
|
493 |
|
494 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
|
495 const TValue *p = luaH_get(t, key); |
|
496 t->flags = 0; |
|
497 if (p != luaO_nilobject) |
|
498 return cast(TValue *, p); |
|
499 else { |
|
500 if (ttisnil(key)) luaG_runerror(L, "table index is nil"); |
|
501 else if (ttisnumber(key) && luai_numisnan(nvalue(key))) |
|
502 luaG_runerror(L, "table index is NaN"); |
|
503 return newkey(L, t, key); |
|
504 } |
|
505 } |
|
506 |
|
507 |
|
508 TValue *luaH_setnum (lua_State *L, Table *t, int key) { |
|
509 const TValue *p = luaH_getnum(t, key); |
|
510 if (p != luaO_nilobject) |
|
511 return cast(TValue *, p); |
|
512 else { |
|
513 TValue k; |
|
514 setnvalue(&k, cast_num(key)); |
|
515 return newkey(L, t, &k); |
|
516 } |
|
517 } |
|
518 |
|
519 |
|
520 TValue *luaH_setstr (lua_State *L, Table *t, TString *key) { |
|
521 const TValue *p = luaH_getstr(t, key); |
|
522 if (p != luaO_nilobject) |
|
523 return cast(TValue *, p); |
|
524 else { |
|
525 TValue k; |
|
526 setsvalue(L, &k, key); |
|
527 return newkey(L, t, &k); |
|
528 } |
|
529 } |
|
530 |
|
531 |
|
532 static int unbound_search (Table *t, unsigned int j) { |
|
533 unsigned int i = j; /* i is zero or a present index */ |
|
534 j++; |
|
535 /* find `i' and `j' such that i is present and j is not */ |
|
536 while (!ttisnil(luaH_getnum(t, j))) { |
|
537 i = j; |
|
538 j *= 2; |
|
539 if (j > cast(unsigned int, MAX_INT)) { /* overflow? */ |
|
540 /* table was built with bad purposes: resort to linear search */ |
|
541 i = 1; |
|
542 while (!ttisnil(luaH_getnum(t, i))) i++; |
|
543 return i - 1; |
|
544 } |
|
545 } |
|
546 /* now do a binary search between them */ |
|
547 while (j - i > 1) { |
|
548 unsigned int m = (i+j)/2; |
|
549 if (ttisnil(luaH_getnum(t, m))) j = m; |
|
550 else i = m; |
|
551 } |
|
552 return i; |
|
553 } |
|
554 |
|
555 |
|
556 /* |
|
557 ** Try to find a boundary in table `t'. A `boundary' is an integer index |
|
558 ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). |
|
559 */ |
|
560 int luaH_getn (Table *t) { |
|
561 unsigned int j = t->sizearray; |
|
562 if (j > 0 && ttisnil(&t->array[j - 1])) { |
|
563 /* there is a boundary in the array part: (binary) search for it */ |
|
564 unsigned int i = 0; |
|
565 while (j - i > 1) { |
|
566 unsigned int m = (i+j)/2; |
|
567 if (ttisnil(&t->array[m - 1])) j = m; |
|
568 else i = m; |
|
569 } |
|
570 return i; |
|
571 } |
|
572 /* else must find a boundary in hash part */ |
|
573 else if (t->node == dummynode) /* hash part is empty? */ |
|
574 return j; /* that is easy... */ |
|
575 else return unbound_search(t, j); |
|
576 } |
|
577 |
|
578 |
|
579 |
|
580 #if defined(LUA_DEBUG) |
|
581 |
|
582 Node *luaH_mainposition (const Table *t, const TValue *key) { |
|
583 return mainposition(t, key); |
|
584 } |
|
585 |
|
586 int luaH_isdummy (Node *n) { return n == dummynode; } |
|
587 |
|
588 #endif |