|
1 (* |
|
2 * Hedgewars, a free turn based strategy game |
|
3 * Copyright (c) 2004-2012 Andrey Korotaev <unC0Rr@gmail.com> |
|
4 * |
|
5 * This program is free software; you can redistribute it and/or modify |
|
6 * it under the terms of the GNU General Public License as published by |
|
7 * the Free Software Foundation; version 2 of the License |
|
8 * |
|
9 * This program is distributed in the hope that it will be useful, |
|
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
12 * GNU General Public License for more details. |
|
13 * |
|
14 * You should have received a copy of the GNU General Public License |
|
15 * along with this program; if not, write to the Free Software |
|
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
|
17 *) |
|
18 |
|
19 {$INCLUDE "options.inc"} |
|
20 |
|
21 unit uMatrix; |
|
22 |
|
23 interface |
|
24 |
|
25 uses uTypes, gl; |
|
26 |
|
27 procedure MatrixLoadIdentity(out Result: TMatrix4x4f); |
|
28 procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f); |
|
29 |
|
30 implementation |
|
31 |
|
32 procedure MatrixLoadIdentity(out Result: TMatrix4x4f); |
|
33 begin |
|
34 Result[0,0]:= 1.0; Result[1,0]:=0.0; Result[2,0]:=0.0; Result[3,0]:=0.0; |
|
35 Result[0,1]:= 0.0; Result[1,1]:=1.0; Result[2,1]:=0.0; Result[3,1]:=0.0; |
|
36 Result[0,2]:= 0.0; Result[1,2]:=0.0; Result[2,2]:=1.0; Result[3,2]:=0.0; |
|
37 Result[0,3]:= 0.0; Result[1,3]:=0.0; Result[2,3]:=0.0; Result[3,3]:=1.0; |
|
38 end; |
|
39 |
|
40 procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f); |
|
41 var |
|
42 test: TMatrix4x4f; |
|
43 i, j: Integer; |
|
44 error: boolean; |
|
45 begin |
|
46 Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3]; |
|
47 Result[0,1]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3]; |
|
48 Result[0,2]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3]; |
|
49 Result[0,3]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3]; |
|
50 |
|
51 Result[1,0]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3]; |
|
52 Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3]; |
|
53 Result[1,2]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3]; |
|
54 Result[1,3]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3]; |
|
55 |
|
56 Result[2,0]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3]; |
|
57 Result[2,1]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3]; |
|
58 Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3]; |
|
59 Result[2,3]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3]; |
|
60 |
|
61 Result[3,0]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3]; |
|
62 Result[3,1]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3]; |
|
63 Result[3,2]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3]; |
|
64 Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3]; |
|
65 |
|
66 { |
|
67 Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3]; |
|
68 Result[0,1]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3]; |
|
69 Result[0,2]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3]; |
|
70 Result[0,3]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3]; |
|
71 |
|
72 Result[1,0]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3]; |
|
73 Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3]; |
|
74 Result[1,2]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3]; |
|
75 Result[1,3]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3]; |
|
76 |
|
77 Result[2,0]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3]; |
|
78 Result[2,1]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3]; |
|
79 Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3]; |
|
80 Result[2,3]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3]; |
|
81 |
|
82 Result[3,0]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3]; |
|
83 Result[3,1]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3]; |
|
84 Result[3,2]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3]; |
|
85 Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3]; |
|
86 } |
|
87 glPushMatrix; |
|
88 glLoadMatrixf(@lhs[0, 0]); |
|
89 glMultMatrixf(@rhs[0, 0]); |
|
90 glGetFloatv(GL_MODELVIEW_MATRIX, @test[0, 0]); |
|
91 glPopMatrix; |
|
92 |
|
93 error:=false; |
|
94 for i:=0 to 3 do |
|
95 for j:=0 to 3 do |
|
96 if Abs(test[i, j] - Result[i, j]) > 0.000001 then |
|
97 error:=true; |
|
98 |
|
99 if error then |
|
100 begin |
|
101 writeln('shall:'); |
|
102 for i:=0 to 3 do |
|
103 begin |
|
104 for j:=0 to 3 do |
|
105 write(test[i, j]); |
|
106 writeln; |
|
107 end; |
|
108 |
|
109 writeln('is:'); |
|
110 for i:=0 to 3 do |
|
111 begin |
|
112 for j:=0 to 3 do |
|
113 write(Result[i, j]); |
|
114 writeln; |
|
115 end; |
|
116 halt(0); |
|
117 end; |
|
118 |
|
119 |
|
120 end; |
|
121 |
|
122 |
|
123 end. |