hedgewars/uMatrix.pas
author nemo
Wed, 30 Dec 2015 23:30:00 -0500
changeset 11473 023db094b22d
parent 11317 62287d4044e7
child 11797 d9d48143dcbe
permissions -rw-r--r--
Some themers expressed desire to have translucent themes. While the current AA stuff in uLandGraphics won't really allow this to work with LandBackTex properly, seems to me it should be safe to allow alpha for LandTex. Our LandTex should all have alpha of 255 on the existing themes.

(*
 * Hedgewars, a free turn based strategy game
 * Copyright (c) 2004-2012 Andrey Korotaev <unC0Rr@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *)

{$INCLUDE "options.inc"}

unit uMatrix;

interface

uses uTypes {$IFNDEF PAS2C}, gl{$ENDIF};

const
    MATRIX_MODELVIEW:Integer = 0;
    MATRIX_PROJECTION:Integer = 1;

procedure MatrixLoadIdentity(out Result: TMatrix4x4f);
procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f);

procedure hglMatrixMode(t: Integer);
procedure hglLoadIdentity();
procedure hglPushMatrix();
procedure hglPopMatrix();
procedure hglMVP(var res : TMatrix4x4f);
procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat);
procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat);
procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat);
procedure initModule();
procedure freeModule();

implementation

uses uDebug;

const
    MATRIX_STACK_SIZE = 10;

type
    TMatrixStack = record
        top:Integer;
        stack: array[0..9] of TMatrix4x4f;
        end;
var
    MatrixStacks : array[0..1] of TMatrixStack;
    CurMatrix: integer;

procedure MatrixLoadIdentity(out Result: TMatrix4x4f);
begin
    Result[0,0]:= 1.0; Result[1,0]:=0.0; Result[2,0]:=0.0; Result[3,0]:=0.0;
    Result[0,1]:= 0.0; Result[1,1]:=1.0; Result[2,1]:=0.0; Result[3,1]:=0.0;
    Result[0,2]:= 0.0; Result[1,2]:=0.0; Result[2,2]:=1.0; Result[3,2]:=0.0;
    Result[0,3]:= 0.0; Result[1,3]:=0.0; Result[2,3]:=0.0; Result[3,3]:=1.0;
end;

procedure hglMatrixMode(t: Integer);
begin
    CurMatrix := t;
end;

procedure hglLoadIdentity();
begin
    MatrixLoadIdentity(MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top]);
end;

procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat);
var
    m:TMatrix4x4f;
    t:TMatrix4x4f;
begin
    m[0,0]:=x;m[1,0]:=0;m[2,0]:=0;m[3,0]:=0;
    m[0,1]:=0;m[1,1]:=y;m[2,1]:=0;m[3,1]:=0;
    m[0,2]:=0;m[1,2]:=0;m[2,2]:=z;m[3,2]:=0;
    m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;

    MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
    MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;

procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat);
var
    m:TMatrix4x4f;
    t:TMatrix4x4f;
begin
    m[0,0]:=1;m[1,0]:=0;m[2,0]:=0;m[3,0]:=x;
    m[0,1]:=0;m[1,1]:=1;m[2,1]:=0;m[3,1]:=y;
    m[0,2]:=0;m[1,2]:=0;m[2,2]:=1;m[3,2]:=z;
    m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;

    MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
    MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;

procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat);
var
    m:TMatrix4x4f;
    t:TMatrix4x4f;
    c:GLfloat;
    s:GLfloat;
    xn, yn, zn:GLfloat;
    l:GLfloat;
begin
    a:=a * 3.14159265368 / 180;
    c:=cos(a);
    s:=sin(a);

    l := 1.0 / sqrt(x * x + y * y + z * z);
    xn := x * l;
    yn := y * l;
    zn := z * l;

    m[0,0]:=c + xn * xn * (1 - c);
    m[1,0]:=xn * yn * (1 - c) - zn * s;
    m[2,0]:=xn * zn * (1 - c) + yn * s;
    m[3,0]:=0;


    m[0,1]:=yn * xn * (1 - c) + zn * s;
    m[1,1]:=c + yn * yn * (1 - c);
    m[2,1]:=yn * zn * (1 - c) - xn * s;
    m[3,1]:=0;

    m[0,2]:=zn * xn * (1 - c) - yn * s;
    m[1,2]:=zn * yn * (1 - c) + xn * s;
    m[2,2]:=c + zn * zn * (1 - c);
    m[3,2]:=0;

    m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;

    MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
    MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;

procedure hglMVP(var res: TMatrix4x4f);
begin
    MatrixMultiply(res,
                   MatrixStacks[MATRIX_PROJECTION].stack[MatrixStacks[MATRIX_PROJECTION].top],
                   MatrixStacks[MATRIX_MODELVIEW].stack[MatrixStacks[MATRIX_MODELVIEW].top]);
end;

procedure hglPushMatrix();
var
    t: Integer;
begin
    t := MatrixStacks[CurMatrix].top;
    MatrixStacks[CurMatrix].stack[t + 1] := MatrixStacks[CurMatrix].stack[t];
    inc(t);
    MatrixStacks[CurMatrix].top := t;
end;

procedure hglPopMatrix();
var
    t: Integer;
begin
    t := MatrixStacks[CurMatrix].top;
    dec(t);
    MatrixStacks[CurMatrix].top := t;
end;

procedure initModule();
begin
    MatrixStacks[MATRIX_MODELVIEW].top := 0;
    MatrixStacks[MATRIX_Projection].top := 0;
    MatrixLoadIdentity(MatrixStacks[MATRIX_MODELVIEW].stack[0]);
    MatrixLoadIdentity(MatrixStacks[MATRIX_PROJECTION].stack[0]);
end;

procedure freeModule();
begin
end;

procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f);
var
    test: TMatrix4x4f;
    i, j: Integer;
    error: boolean;
begin
    Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3];
    Result[0,1]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3];
    Result[0,2]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3];
    Result[0,3]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3];

    Result[1,0]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3];
    Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3];
    Result[1,2]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3];
    Result[1,3]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3];

    Result[2,0]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3];
    Result[2,1]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3];
    Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3];
    Result[2,3]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3];

    Result[3,0]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3];
    Result[3,1]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3];
    Result[3,2]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3];
    Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3];

{
    Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3];
    Result[0,1]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3];
    Result[0,2]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3];
    Result[0,3]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3];

    Result[1,0]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3];
    Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3];
    Result[1,2]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3];
    Result[1,3]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3];

    Result[2,0]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3];
    Result[2,1]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3];
    Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3];
    Result[2,3]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3];

    Result[3,0]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3];
    Result[3,1]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3];
    Result[3,2]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3];
    Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3];
}

    glPushMatrix;
    glLoadMatrixf(@lhs[0, 0]);
    glMultMatrixf(@rhs[0, 0]);
    glGetFloatv(GL_MODELVIEW_MATRIX, @test[0, 0]);
    glPopMatrix;

    error:=false;
    for i:=0 to 3 do
      for j:=0 to 3 do
        if Abs(test[i, j] - Result[i, j]) > 0.000001 then
          error:=true;

    {$IFNDEF PAS2C}
    if error then
    begin
        writeln('shall:');
        for i:=0 to 3 do
        begin
          for j:=0 to 3 do
            write(test[i, j]);
          writeln;
        end;

        writeln('is:');
        for i:=0 to 3 do
        begin
          for j:=0 to 3 do
            write(Result[i, j]);
          writeln;
        end;
        TryDo(false, 'error in matrix multiplication?!', true);
    end;
    {$ENDIF}

end;


end.