minimal changes for compatibility with lua 5.2, thanks to v4hn for fixing standard library loads. note: ALSO compatibile with (internal) lua 5.1, until something bothers to upgrade bundled lua version
{-# LANGUAGE OverloadedStrings, BangPatterns #-}
module FloodDetection where
import Control.Monad.State.Strict
import Data.Time
import Control.Arrow
----------------
import ServerState
import CoreTypes
import Utils
registerEvent :: Event -> StateT ServerState IO [Action]
registerEvent e = do
eventInfo <- client's $ einfo e
if (null eventInfo) || 0 == (fst $ head eventInfo) then doCheck eventInfo else updateInfo
where
einfo LobbyChatMessage = eiLobbyChat
einfo EngineMessage = eiEM
einfo RoomJoin = eiJoin
transformField LobbyChatMessage f = \c -> c{eiLobbyChat = f $ eiLobbyChat c}
transformField EngineMessage f = \c -> c{eiEM = f $ eiEM c}
transformField RoomJoin f = \c -> c{eiJoin = f $ eiJoin c}
boundaries :: Event -> (Int, (NominalDiffTime, Int), (NominalDiffTime, Int), ([Action], [Action]))
boundaries LobbyChatMessage = (3, (10, 2), (30, 3), (chat1, chat2))
boundaries EngineMessage = (8, (10, 4), (25, 5), (em1, em2))
boundaries RoomJoin = (2, (10, 2), (35, 3), (join1, join2))
chat1 = [Warning $ loc "Warning! Chat flood protection activated"]
chat2 = [ByeClient $ loc "Excess flood"]
em1 = [Warning $ loc "Game messages flood detected - 1"]
em2 = [Warning $ loc "Game messages flood detected - 2"]
join1 = [Warning $ loc "Warning! Joins flood protection activated"]
join2 = [ByeClient $ loc "Excess flood"]
doCheck ei = do
curTime <- io getCurrentTime
let (numPerEntry, (sec1, num1), (sec2, num2), (ac1, ac2)) = boundaries e
let nei = takeWhile ((>=) sec2 . diffUTCTime curTime . snd) ei
let l2 = length nei
let l1 = length $ takeWhile ((>=) sec1 . diffUTCTime curTime . snd) nei
let actions = if l2 >= num2 + 1 || l1 >= num1 + 1 then
ac2
else
if l1 >= num1 || l2 >= num2 then
ac1
else
[]
return $ (ModifyClient . transformField e . const $ (numPerEntry, curTime) : nei) : actions
updateInfo = return [
ModifyClient $ transformField e
$ \(h:hs) -> first (flip (-) 1) h : hs
]