start a physics engine to try out this data oriented thing everyone seems to be talking about
use fpnum::*;
use integral_geometry::{
Point, Size, GridIndex
};
type Index = u16;
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
struct PhysicsData {
position: FPPoint,
velocity: FPPoint,
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
struct CollisionData {
bounds: CircleBounds
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
struct ContactData {
elasticity: FPNum,
friction: FPNum
}
pub struct PhysicsCollection {
positions: Vec<FPPoint>,
velocities: Vec<FPPoint>
}
impl PhysicsCollection {
fn push(&mut self, data: PhysicsData) {
self.positions.push(data.position);
self.velocities.push(data.velocity);
}
fn iter_mut_pos(&mut self) -> impl Iterator<Item = (&mut FPPoint, &FPPoint)> {
self.positions.iter_mut().zip(self.velocities.iter())
}
}
pub struct JoinedData {
physics: PhysicsData,
collision: CollisionData,
contact: ContactData
}
pub struct World {
enabled_physics: PhysicsCollection,
disabled_physics: Vec<PhysicsData>,
collision: Vec<CollisionData>,
grid: Grid,
physics_cleanup: Vec<PhysicsData>,
collision_output: Vec<(Index, Index)>
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
struct CircleBounds {
center: FPPoint,
radius: FPNum
}
impl CircleBounds {
fn intersects(&self, other: &CircleBounds) -> bool {
(other.center - self.center).is_in_range(self.radius + other.radius)
}
}
fn fppoint_round(point: &FPPoint) -> Point {
Point::new(point.x().round() as i32, point.y().round() as i32)
}
struct GridBin {
refs: Vec<Index>,
static_entries: Vec<CircleBounds>,
dynamic_entries: Vec<CircleBounds>
}
impl GridBin {
fn new() -> Self {
Self {
refs: vec![],
static_entries: vec![],
dynamic_entries: vec![]
}
}
}
const GRID_BIN_SIZE: usize = 256;
struct Grid {
bins: Vec<GridBin>,
space_size: Size,
bins_count: Size,
index: GridIndex
}
impl Grid {
fn new(size: Size) -> Self {
assert!(size.is_power_of_two());
let bins_count =
Size::new(size.width / GRID_BIN_SIZE,
size.height / GRID_BIN_SIZE);
Self {
bins: (0..bins_count.area()).map(|_| GridBin::new()).collect(),
space_size: size,
bins_count,
index: Size::square(GRID_BIN_SIZE).to_grid_index()
}
}
fn bin_index(&self, position: &FPPoint) -> Point {
self.index.map(fppoint_round(position))
}
fn lookup_bin(&mut self, position: &FPPoint) -> &mut GridBin {
let index = self.bin_index(position);
&mut self.bins[index.x as usize * self.bins_count.width + index.y as usize]
}
fn insert_static(&mut self, index: Index, position: &FPPoint, bounds: &CircleBounds) {
self.lookup_bin(position).static_entries.push(*bounds)
}
fn insert_dynamic(&mut self, index: Index, position: &FPPoint, bounds: &CircleBounds) {
self.lookup_bin(position).dynamic_entries.push(*bounds)
}
fn check_collisions(&self, collisions: &mut Vec<(Index, Index)>) {
for bin in &self.bins {
for bounds in &bin.dynamic_entries {
for other in &bin.dynamic_entries {
if bounds.intersects(other) && bounds != other {
collisions.push((0, 0))
}
}
for other in &bin.static_entries {
if bounds.intersects(other) {
collisions.push((0, 0))
}
}
}
}
}
}
impl World {
pub fn step(&mut self, time_step: FPNum) {
for (pos, vel) in self.enabled_physics.iter_mut_pos() {
*pos += *vel
}
self.grid.check_collisions(&mut self.collision_output);
}
pub fn add_gear(&mut self, data: JoinedData) {
if data.physics.velocity == FPPoint::zero() {
self.disabled_physics.push(data.physics);
self.grid.insert_static(0, &data.physics.position, &data.collision.bounds);
} else {
self.enabled_physics.push(data.physics);
self.grid.insert_dynamic(0, &data.physics.position, &data.collision.bounds);
}
}
}
#[cfg(test)]
mod tests {
}