7859
|
1 |
/********************************************************************
|
|
2 |
* *
|
|
3 |
* THIS FILE IS PART OF THE OggVorbis 'TREMOR' CODEC SOURCE CODE. *
|
|
4 |
* *
|
|
5 |
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
|
|
6 |
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
|
|
7 |
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
|
|
8 |
* *
|
|
9 |
* THE OggVorbis 'TREMOR' SOURCE CODE IS (C) COPYRIGHT 1994-2002 *
|
|
10 |
* BY THE Xiph.Org FOUNDATION http://www.xiph.org/ *
|
|
11 |
* *
|
|
12 |
********************************************************************
|
|
13 |
|
|
14 |
function: basic shared codebook operations
|
|
15 |
|
|
16 |
********************************************************************/
|
|
17 |
|
|
18 |
#include <stdlib.h>
|
|
19 |
#include <math.h>
|
|
20 |
#include <string.h>
|
|
21 |
#include "ogg.h"
|
|
22 |
#include "misc.h"
|
|
23 |
#include "ivorbiscodec.h"
|
|
24 |
#include "codebook.h"
|
|
25 |
|
|
26 |
/**** pack/unpack helpers ******************************************/
|
|
27 |
int _ilog(unsigned int v){
|
|
28 |
int ret=0;
|
|
29 |
while(v){
|
|
30 |
ret++;
|
|
31 |
v>>=1;
|
|
32 |
}
|
|
33 |
return(ret);
|
|
34 |
}
|
|
35 |
|
|
36 |
/* 32 bit float (not IEEE; nonnormalized mantissa +
|
|
37 |
biased exponent) : neeeeeee eeemmmmm mmmmmmmm mmmmmmmm
|
|
38 |
Why not IEEE? It's just not that important here. */
|
|
39 |
|
|
40 |
#define VQ_FEXP 10
|
|
41 |
#define VQ_FMAN 21
|
|
42 |
#define VQ_FEXP_BIAS 768 /* bias toward values smaller than 1. */
|
|
43 |
|
|
44 |
static ogg_int32_t _float32_unpack(long val,int *point){
|
|
45 |
long mant=val&0x1fffff;
|
|
46 |
int sign=val&0x80000000;
|
|
47 |
long exp =(val&0x7fe00000L)>>VQ_FMAN;
|
|
48 |
|
|
49 |
exp-=(VQ_FMAN-1)+VQ_FEXP_BIAS;
|
|
50 |
|
|
51 |
if(mant){
|
|
52 |
while(!(mant&0x40000000)){
|
|
53 |
mant<<=1;
|
|
54 |
exp-=1;
|
|
55 |
}
|
|
56 |
|
|
57 |
if(sign)mant= -mant;
|
|
58 |
}else{
|
|
59 |
sign=0;
|
|
60 |
exp=-9999;
|
|
61 |
}
|
|
62 |
|
|
63 |
*point=exp;
|
|
64 |
return mant;
|
|
65 |
}
|
|
66 |
|
|
67 |
/* given a list of word lengths, generate a list of codewords. Works
|
|
68 |
for length ordered or unordered, always assigns the lowest valued
|
|
69 |
codewords first. Extended to handle unused entries (length 0) */
|
|
70 |
ogg_uint32_t *_make_words(long *l,long n,long sparsecount){
|
|
71 |
long i,j,count=0;
|
|
72 |
ogg_uint32_t marker[33];
|
|
73 |
ogg_uint32_t *r=(ogg_uint32_t *)_ogg_malloc((sparsecount?sparsecount:n)*sizeof(*r));
|
|
74 |
memset(marker,0,sizeof(marker));
|
|
75 |
|
|
76 |
for(i=0;i<n;i++){
|
|
77 |
long length=l[i];
|
|
78 |
if(length>0){
|
|
79 |
ogg_uint32_t entry=marker[length];
|
|
80 |
|
|
81 |
/* when we claim a node for an entry, we also claim the nodes
|
|
82 |
below it (pruning off the imagined tree that may have dangled
|
|
83 |
from it) as well as blocking the use of any nodes directly
|
|
84 |
above for leaves */
|
|
85 |
|
|
86 |
/* update ourself */
|
|
87 |
if(length<32 && (entry>>length)){
|
|
88 |
/* error condition; the lengths must specify an overpopulated tree */
|
|
89 |
_ogg_free(r);
|
|
90 |
return(NULL);
|
|
91 |
}
|
|
92 |
r[count++]=entry;
|
|
93 |
|
|
94 |
/* Look to see if the next shorter marker points to the node
|
|
95 |
above. if so, update it and repeat. */
|
|
96 |
{
|
|
97 |
for(j=length;j>0;j--){
|
|
98 |
|
|
99 |
if(marker[j]&1){
|
|
100 |
/* have to jump branches */
|
|
101 |
if(j==1)
|
|
102 |
marker[1]++;
|
|
103 |
else
|
|
104 |
marker[j]=marker[j-1]<<1;
|
|
105 |
break; /* invariant says next upper marker would already
|
|
106 |
have been moved if it was on the same path */
|
|
107 |
}
|
|
108 |
marker[j]++;
|
|
109 |
}
|
|
110 |
}
|
|
111 |
|
|
112 |
/* prune the tree; the implicit invariant says all the longer
|
|
113 |
markers were dangling from our just-taken node. Dangle them
|
|
114 |
from our *new* node. */
|
|
115 |
for(j=length+1;j<33;j++)
|
|
116 |
if((marker[j]>>1) == entry){
|
|
117 |
entry=marker[j];
|
|
118 |
marker[j]=marker[j-1]<<1;
|
|
119 |
}else
|
|
120 |
break;
|
|
121 |
}else
|
|
122 |
if(sparsecount==0)count++;
|
|
123 |
}
|
|
124 |
|
|
125 |
/* bitreverse the words because our bitwise packer/unpacker is LSb
|
|
126 |
endian */
|
|
127 |
for(i=0,count=0;i<n;i++){
|
|
128 |
ogg_uint32_t temp=0;
|
|
129 |
for(j=0;j<l[i];j++){
|
|
130 |
temp<<=1;
|
|
131 |
temp|=(r[count]>>j)&1;
|
|
132 |
}
|
|
133 |
|
|
134 |
if(sparsecount){
|
|
135 |
if(l[i])
|
|
136 |
r[count++]=temp;
|
|
137 |
}else
|
|
138 |
r[count++]=temp;
|
|
139 |
}
|
|
140 |
|
|
141 |
return(r);
|
|
142 |
}
|
|
143 |
|
|
144 |
/* there might be a straightforward one-line way to do the below
|
|
145 |
that's portable and totally safe against roundoff, but I haven't
|
|
146 |
thought of it. Therefore, we opt on the side of caution */
|
|
147 |
long _book_maptype1_quantvals(const static_codebook *b){
|
|
148 |
/* get us a starting hint, we'll polish it below */
|
|
149 |
int bits=_ilog(b->entries);
|
|
150 |
int vals=b->entries>>((bits-1)*(b->dim-1)/b->dim);
|
|
151 |
|
|
152 |
while(1){
|
|
153 |
long acc=1;
|
|
154 |
long acc1=1;
|
|
155 |
int i;
|
|
156 |
for(i=0;i<b->dim;i++){
|
|
157 |
acc*=vals;
|
|
158 |
acc1*=vals+1;
|
|
159 |
}
|
|
160 |
if(acc<=b->entries && acc1>b->entries){
|
|
161 |
return(vals);
|
|
162 |
}else{
|
|
163 |
if(acc>b->entries){
|
|
164 |
vals--;
|
|
165 |
}else{
|
|
166 |
vals++;
|
|
167 |
}
|
|
168 |
}
|
|
169 |
}
|
|
170 |
}
|
|
171 |
|
|
172 |
/* different than what _book_unquantize does for mainline:
|
|
173 |
we repack the book in a fixed point format that shares the same
|
|
174 |
binary point. Upon first use, we can shift point if needed */
|
|
175 |
|
|
176 |
/* we need to deal with two map types: in map type 1, the values are
|
|
177 |
generated algorithmically (each column of the vector counts through
|
|
178 |
the values in the quant vector). in map type 2, all the values came
|
|
179 |
in in an explicit list. Both value lists must be unpacked */
|
|
180 |
|
|
181 |
ogg_int32_t *_book_unquantize(const static_codebook *b,int n,int *sparsemap,
|
|
182 |
int *maxpoint){
|
|
183 |
long j,k,count=0;
|
|
184 |
if(b->maptype==1 || b->maptype==2){
|
|
185 |
int quantvals;
|
|
186 |
int minpoint,delpoint;
|
|
187 |
ogg_int32_t mindel=_float32_unpack(b->q_min,&minpoint);
|
|
188 |
ogg_int32_t delta=_float32_unpack(b->q_delta,&delpoint);
|
|
189 |
ogg_int32_t *r=(ogg_int32_t *)_ogg_calloc(n*b->dim,sizeof(*r));
|
|
190 |
int *rp=(int *)_ogg_calloc(n*b->dim,sizeof(*rp));
|
|
191 |
|
|
192 |
*maxpoint=minpoint;
|
|
193 |
|
|
194 |
/* maptype 1 and 2 both use a quantized value vector, but
|
|
195 |
different sizes */
|
|
196 |
switch(b->maptype){
|
|
197 |
case 1:
|
|
198 |
/* most of the time, entries%dimensions == 0, but we need to be
|
|
199 |
well defined. We define that the possible vales at each
|
|
200 |
scalar is values == entries/dim. If entries%dim != 0, we'll
|
|
201 |
have 'too few' values (values*dim<entries), which means that
|
|
202 |
we'll have 'left over' entries; left over entries use zeroed
|
|
203 |
values (and are wasted). So don't generate codebooks like
|
|
204 |
that */
|
|
205 |
quantvals=_book_maptype1_quantvals(b);
|
|
206 |
for(j=0;j<b->entries;j++){
|
|
207 |
if((sparsemap && b->lengthlist[j]) || !sparsemap){
|
|
208 |
ogg_int32_t last=0;
|
|
209 |
int lastpoint=0;
|
|
210 |
int indexdiv=1;
|
|
211 |
for(k=0;k<b->dim;k++){
|
|
212 |
int index= (j/indexdiv)%quantvals;
|
|
213 |
int point=0;
|
|
214 |
int val=VFLOAT_MULTI(delta,delpoint,
|
|
215 |
abs(b->quantlist[index]),&point);
|
|
216 |
|
|
217 |
val=VFLOAT_ADD(mindel,minpoint,val,point,&point);
|
|
218 |
val=VFLOAT_ADD(last,lastpoint,val,point,&point);
|
|
219 |
|
|
220 |
if(b->q_sequencep){
|
|
221 |
last=val;
|
|
222 |
lastpoint=point;
|
|
223 |
}
|
|
224 |
|
|
225 |
if(sparsemap){
|
|
226 |
r[sparsemap[count]*b->dim+k]=val;
|
|
227 |
rp[sparsemap[count]*b->dim+k]=point;
|
|
228 |
}else{
|
|
229 |
r[count*b->dim+k]=val;
|
|
230 |
rp[count*b->dim+k]=point;
|
|
231 |
}
|
|
232 |
if(*maxpoint<point)*maxpoint=point;
|
|
233 |
indexdiv*=quantvals;
|
|
234 |
}
|
|
235 |
count++;
|
|
236 |
}
|
|
237 |
|
|
238 |
}
|
|
239 |
break;
|
|
240 |
case 2:
|
|
241 |
for(j=0;j<b->entries;j++){
|
|
242 |
if((sparsemap && b->lengthlist[j]) || !sparsemap){
|
|
243 |
ogg_int32_t last=0;
|
|
244 |
int lastpoint=0;
|
|
245 |
|
|
246 |
for(k=0;k<b->dim;k++){
|
|
247 |
int point=0;
|
|
248 |
int val=VFLOAT_MULTI(delta,delpoint,
|
|
249 |
abs(b->quantlist[j*b->dim+k]),&point);
|
|
250 |
|
|
251 |
val=VFLOAT_ADD(mindel,minpoint,val,point,&point);
|
|
252 |
val=VFLOAT_ADD(last,lastpoint,val,point,&point);
|
|
253 |
|
|
254 |
if(b->q_sequencep){
|
|
255 |
last=val;
|
|
256 |
lastpoint=point;
|
|
257 |
}
|
|
258 |
|
|
259 |
if(sparsemap){
|
|
260 |
r[sparsemap[count]*b->dim+k]=val;
|
|
261 |
rp[sparsemap[count]*b->dim+k]=point;
|
|
262 |
}else{
|
|
263 |
r[count*b->dim+k]=val;
|
|
264 |
rp[count*b->dim+k]=point;
|
|
265 |
}
|
|
266 |
if(*maxpoint<point)*maxpoint=point;
|
|
267 |
}
|
|
268 |
count++;
|
|
269 |
}
|
|
270 |
}
|
|
271 |
break;
|
|
272 |
}
|
|
273 |
|
|
274 |
for(j=0;j<n*b->dim;j++)
|
|
275 |
if(rp[j]<*maxpoint)
|
|
276 |
r[j]>>=*maxpoint-rp[j];
|
|
277 |
|
|
278 |
_ogg_free(rp);
|
|
279 |
return(r);
|
|
280 |
}
|
|
281 |
return(NULL);
|
|
282 |
}
|
|
283 |
|
|
284 |
void vorbis_staticbook_clear(static_codebook *b){
|
|
285 |
if(b->quantlist)_ogg_free(b->quantlist);
|
|
286 |
if(b->lengthlist)_ogg_free(b->lengthlist);
|
|
287 |
memset(b,0,sizeof(*b));
|
|
288 |
|
|
289 |
}
|
|
290 |
|
|
291 |
void vorbis_staticbook_destroy(static_codebook *b){
|
|
292 |
vorbis_staticbook_clear(b);
|
|
293 |
_ogg_free(b);
|
|
294 |
}
|
|
295 |
|
|
296 |
void vorbis_book_clear(codebook *b){
|
|
297 |
/* static book is not cleared; we're likely called on the lookup and
|
|
298 |
the static codebook belongs to the info struct */
|
|
299 |
if(b->valuelist)_ogg_free(b->valuelist);
|
|
300 |
if(b->codelist)_ogg_free(b->codelist);
|
|
301 |
|
|
302 |
if(b->dec_index)_ogg_free(b->dec_index);
|
|
303 |
if(b->dec_codelengths)_ogg_free(b->dec_codelengths);
|
|
304 |
if(b->dec_firsttable)_ogg_free(b->dec_firsttable);
|
|
305 |
|
|
306 |
memset(b,0,sizeof(*b));
|
|
307 |
}
|
|
308 |
|
|
309 |
static ogg_uint32_t bitreverse(ogg_uint32_t x){
|
|
310 |
x= ((x>>16)&0x0000ffffUL) | ((x<<16)&0xffff0000UL);
|
|
311 |
x= ((x>> 8)&0x00ff00ffUL) | ((x<< 8)&0xff00ff00UL);
|
|
312 |
x= ((x>> 4)&0x0f0f0f0fUL) | ((x<< 4)&0xf0f0f0f0UL);
|
|
313 |
x= ((x>> 2)&0x33333333UL) | ((x<< 2)&0xccccccccUL);
|
|
314 |
return((x>> 1)&0x55555555UL) | ((x<< 1)&0xaaaaaaaaUL);
|
|
315 |
}
|
|
316 |
|
|
317 |
static int sort32a(const void *a,const void *b){
|
|
318 |
return (**(ogg_uint32_t **)a>**(ogg_uint32_t **)b)-
|
|
319 |
(**(ogg_uint32_t **)a<**(ogg_uint32_t **)b);
|
|
320 |
}
|
|
321 |
|
|
322 |
/* decode codebook arrangement is more heavily optimized than encode */
|
|
323 |
int vorbis_book_init_decode(codebook *c,const static_codebook *s){
|
|
324 |
int i,j,n=0,tabn;
|
|
325 |
int *sortindex;
|
|
326 |
memset(c,0,sizeof(*c));
|
|
327 |
|
|
328 |
/* count actually used entries */
|
|
329 |
for(i=0;i<s->entries;i++)
|
|
330 |
if(s->lengthlist[i]>0)
|
|
331 |
n++;
|
|
332 |
|
|
333 |
c->entries=s->entries;
|
|
334 |
c->used_entries=n;
|
|
335 |
c->dim=s->dim;
|
|
336 |
|
|
337 |
if(n>0){
|
|
338 |
/* two different remappings go on here.
|
|
339 |
|
|
340 |
First, we collapse the likely sparse codebook down only to
|
|
341 |
actually represented values/words. This collapsing needs to be
|
|
342 |
indexed as map-valueless books are used to encode original entry
|
|
343 |
positions as integers.
|
|
344 |
|
|
345 |
Second, we reorder all vectors, including the entry index above,
|
|
346 |
by sorted bitreversed codeword to allow treeless decode. */
|
|
347 |
|
|
348 |
/* perform sort */
|
|
349 |
ogg_uint32_t *codes=_make_words(s->lengthlist,s->entries,c->used_entries);
|
|
350 |
ogg_uint32_t **codep=(ogg_uint32_t **)alloca(sizeof(*codep)*n);
|
|
351 |
|
|
352 |
if(codes==NULL)goto err_out;
|
|
353 |
|
|
354 |
for(i=0;i<n;i++){
|
|
355 |
codes[i]=bitreverse(codes[i]);
|
|
356 |
codep[i]=codes+i;
|
|
357 |
}
|
|
358 |
|
|
359 |
qsort(codep,n,sizeof(*codep),sort32a);
|
|
360 |
|
|
361 |
sortindex=(int *)alloca(n*sizeof(*sortindex));
|
|
362 |
c->codelist=(ogg_uint32_t *)_ogg_malloc(n*sizeof(*c->codelist));
|
|
363 |
/* the index is a reverse index */
|
|
364 |
for(i=0;i<n;i++){
|
|
365 |
int position=codep[i]-codes;
|
|
366 |
sortindex[position]=i;
|
|
367 |
}
|
|
368 |
|
|
369 |
for(i=0;i<n;i++)
|
|
370 |
c->codelist[sortindex[i]]=codes[i];
|
|
371 |
_ogg_free(codes);
|
|
372 |
|
|
373 |
|
|
374 |
|
|
375 |
c->valuelist=_book_unquantize(s,n,sortindex,&c->binarypoint);
|
|
376 |
c->dec_index=(int *)_ogg_malloc(n*sizeof(*c->dec_index));
|
|
377 |
|
|
378 |
for(n=0,i=0;i<s->entries;i++)
|
|
379 |
if(s->lengthlist[i]>0)
|
|
380 |
c->dec_index[sortindex[n++]]=i;
|
|
381 |
|
|
382 |
c->dec_codelengths=(char *)_ogg_malloc(n*sizeof(*c->dec_codelengths));
|
|
383 |
for(n=0,i=0;i<s->entries;i++)
|
|
384 |
if(s->lengthlist[i]>0)
|
|
385 |
c->dec_codelengths[sortindex[n++]]=s->lengthlist[i];
|
|
386 |
|
|
387 |
c->dec_firsttablen=_ilog(c->used_entries)-4; /* this is magic */
|
|
388 |
if(c->dec_firsttablen<5)c->dec_firsttablen=5;
|
|
389 |
if(c->dec_firsttablen>8)c->dec_firsttablen=8;
|
|
390 |
|
|
391 |
tabn=1<<c->dec_firsttablen;
|
|
392 |
c->dec_firsttable=(ogg_uint32_t *)_ogg_calloc(tabn,sizeof(*c->dec_firsttable));
|
|
393 |
c->dec_maxlength=0;
|
|
394 |
|
|
395 |
for(i=0;i<n;i++){
|
|
396 |
if(c->dec_maxlength<c->dec_codelengths[i])
|
|
397 |
c->dec_maxlength=c->dec_codelengths[i];
|
|
398 |
if(c->dec_codelengths[i]<=c->dec_firsttablen){
|
|
399 |
ogg_uint32_t orig=bitreverse(c->codelist[i]);
|
|
400 |
for(j=0;j<(1<<(c->dec_firsttablen-c->dec_codelengths[i]));j++)
|
|
401 |
c->dec_firsttable[orig|(j<<c->dec_codelengths[i])]=i+1;
|
|
402 |
}
|
|
403 |
}
|
|
404 |
|
|
405 |
/* now fill in 'unused' entries in the firsttable with hi/lo search
|
|
406 |
hints for the non-direct-hits */
|
|
407 |
{
|
|
408 |
ogg_uint32_t mask=0xfffffffeUL<<(31-c->dec_firsttablen);
|
|
409 |
long lo=0,hi=0;
|
|
410 |
|
|
411 |
for(i=0;i<tabn;i++){
|
|
412 |
ogg_uint32_t word=i<<(32-c->dec_firsttablen);
|
|
413 |
if(c->dec_firsttable[bitreverse(word)]==0){
|
|
414 |
while((lo+1)<n && c->codelist[lo+1]<=word)lo++;
|
|
415 |
while( hi<n && word>=(c->codelist[hi]&mask))hi++;
|
|
416 |
|
|
417 |
/* we only actually have 15 bits per hint to play with here.
|
|
418 |
In order to overflow gracefully (nothing breaks, efficiency
|
|
419 |
just drops), encode as the difference from the extremes. */
|
|
420 |
{
|
|
421 |
unsigned long loval=lo;
|
|
422 |
unsigned long hival=n-hi;
|
|
423 |
|
|
424 |
if(loval>0x7fff)loval=0x7fff;
|
|
425 |
if(hival>0x7fff)hival=0x7fff;
|
|
426 |
c->dec_firsttable[bitreverse(word)]=
|
|
427 |
0x80000000UL | (loval<<15) | hival;
|
|
428 |
}
|
|
429 |
}
|
|
430 |
}
|
|
431 |
}
|
|
432 |
}
|
|
433 |
|
|
434 |
return(0);
|
|
435 |
err_out:
|
|
436 |
vorbis_book_clear(c);
|
|
437 |
return(-1);
|
|
438 |
}
|
|
439 |
|