5172
|
1 |
/***************************************************************************/
|
|
2 |
/* */
|
|
3 |
/* ftraster.c */
|
|
4 |
/* */
|
|
5 |
/* The FreeType glyph rasterizer (body). */
|
|
6 |
/* */
|
|
7 |
/* Copyright 1996-2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010, 2011 by */
|
|
8 |
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
9 |
/* */
|
|
10 |
/* This file is part of the FreeType project, and may only be used, */
|
|
11 |
/* modified, and distributed under the terms of the FreeType project */
|
|
12 |
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
13 |
/* this file you indicate that you have read the license and */
|
|
14 |
/* understand and accept it fully. */
|
|
15 |
/* */
|
|
16 |
/***************************************************************************/
|
|
17 |
|
|
18 |
/*************************************************************************/
|
|
19 |
/* */
|
|
20 |
/* This file can be compiled without the rest of the FreeType engine, by */
|
|
21 |
/* defining the _STANDALONE_ macro when compiling it. You also need to */
|
|
22 |
/* put the files `ftimage.h' and `ftmisc.h' into the $(incdir) */
|
|
23 |
/* directory. Typically, you should do something like */
|
|
24 |
/* */
|
|
25 |
/* - copy `src/raster/ftraster.c' (this file) to your current directory */
|
|
26 |
/* */
|
|
27 |
/* - copy `include/freetype/ftimage.h' and `src/raster/ftmisc.h' */
|
|
28 |
/* to your current directory */
|
|
29 |
/* */
|
|
30 |
/* - compile `ftraster' with the _STANDALONE_ macro defined, as in */
|
|
31 |
/* */
|
|
32 |
/* cc -c -D_STANDALONE_ ftraster.c */
|
|
33 |
/* */
|
|
34 |
/* The renderer can be initialized with a call to */
|
|
35 |
/* `ft_standard_raster.raster_new'; a bitmap can be generated */
|
|
36 |
/* with a call to `ft_standard_raster.raster_render'. */
|
|
37 |
/* */
|
|
38 |
/* See the comments and documentation in the file `ftimage.h' for more */
|
|
39 |
/* details on how the raster works. */
|
|
40 |
/* */
|
|
41 |
/*************************************************************************/
|
|
42 |
|
|
43 |
|
|
44 |
/*************************************************************************/
|
|
45 |
/* */
|
|
46 |
/* This is a rewrite of the FreeType 1.x scan-line converter */
|
|
47 |
/* */
|
|
48 |
/*************************************************************************/
|
|
49 |
|
|
50 |
#ifdef _STANDALONE_
|
|
51 |
|
|
52 |
#define FT_CONFIG_STANDARD_LIBRARY_H <stdlib.h>
|
|
53 |
|
|
54 |
#include <string.h> /* for memset */
|
|
55 |
|
|
56 |
#include "ftmisc.h"
|
|
57 |
#include "ftimage.h"
|
|
58 |
|
|
59 |
#else /* !_STANDALONE_ */
|
|
60 |
|
|
61 |
#include <ft2build.h>
|
|
62 |
#include "ftraster.h"
|
|
63 |
#include FT_INTERNAL_CALC_H /* for FT_MulDiv only */
|
|
64 |
|
|
65 |
#include "rastpic.h"
|
|
66 |
|
|
67 |
#endif /* !_STANDALONE_ */
|
|
68 |
|
|
69 |
|
|
70 |
/*************************************************************************/
|
|
71 |
/* */
|
|
72 |
/* A simple technical note on how the raster works */
|
|
73 |
/* ----------------------------------------------- */
|
|
74 |
/* */
|
|
75 |
/* Converting an outline into a bitmap is achieved in several steps: */
|
|
76 |
/* */
|
|
77 |
/* 1 - Decomposing the outline into successive `profiles'. Each */
|
|
78 |
/* profile is simply an array of scanline intersections on a given */
|
|
79 |
/* dimension. A profile's main attributes are */
|
|
80 |
/* */
|
|
81 |
/* o its scanline position boundaries, i.e. `Ymin' and `Ymax' */
|
|
82 |
/* */
|
|
83 |
/* o an array of intersection coordinates for each scanline */
|
|
84 |
/* between `Ymin' and `Ymax' */
|
|
85 |
/* */
|
|
86 |
/* o a direction, indicating whether it was built going `up' or */
|
|
87 |
/* `down', as this is very important for filling rules */
|
|
88 |
/* */
|
|
89 |
/* o its drop-out mode */
|
|
90 |
/* */
|
|
91 |
/* 2 - Sweeping the target map's scanlines in order to compute segment */
|
|
92 |
/* `spans' which are then filled. Additionally, this pass */
|
|
93 |
/* performs drop-out control. */
|
|
94 |
/* */
|
|
95 |
/* The outline data is parsed during step 1 only. The profiles are */
|
|
96 |
/* built from the bottom of the render pool, used as a stack. The */
|
|
97 |
/* following graphics shows the profile list under construction: */
|
|
98 |
/* */
|
|
99 |
/* __________________________________________________________ _ _ */
|
|
100 |
/* | | | | | */
|
|
101 |
/* | profile | coordinates for | profile | coordinates for |--> */
|
|
102 |
/* | 1 | profile 1 | 2 | profile 2 |--> */
|
|
103 |
/* |_________|_________________|_________|_________________|__ _ _ */
|
|
104 |
/* */
|
|
105 |
/* ^ ^ */
|
|
106 |
/* | | */
|
|
107 |
/* start of render pool top */
|
|
108 |
/* */
|
|
109 |
/* The top of the profile stack is kept in the `top' variable. */
|
|
110 |
/* */
|
|
111 |
/* As you can see, a profile record is pushed on top of the render */
|
|
112 |
/* pool, which is then followed by its coordinates/intersections. If */
|
|
113 |
/* a change of direction is detected in the outline, a new profile is */
|
|
114 |
/* generated until the end of the outline. */
|
|
115 |
/* */
|
|
116 |
/* Note that when all profiles have been generated, the function */
|
|
117 |
/* Finalize_Profile_Table() is used to record, for each profile, its */
|
|
118 |
/* bottom-most scanline as well as the scanline above its upmost */
|
|
119 |
/* boundary. These positions are called `y-turns' because they (sort */
|
|
120 |
/* of) correspond to local extrema. They are stored in a sorted list */
|
|
121 |
/* built from the top of the render pool as a downwards stack: */
|
|
122 |
/* */
|
|
123 |
/* _ _ _______________________________________ */
|
|
124 |
/* | | */
|
|
125 |
/* <--| sorted list of | */
|
|
126 |
/* <--| extrema scanlines | */
|
|
127 |
/* _ _ __________________|____________________| */
|
|
128 |
/* */
|
|
129 |
/* ^ ^ */
|
|
130 |
/* | | */
|
|
131 |
/* maxBuff sizeBuff = end of pool */
|
|
132 |
/* */
|
|
133 |
/* This list is later used during the sweep phase in order to */
|
|
134 |
/* optimize performance (see technical note on the sweep below). */
|
|
135 |
/* */
|
|
136 |
/* Of course, the raster detects whether the two stacks collide and */
|
|
137 |
/* handles the situation properly. */
|
|
138 |
/* */
|
|
139 |
/*************************************************************************/
|
|
140 |
|
|
141 |
|
|
142 |
/*************************************************************************/
|
|
143 |
/*************************************************************************/
|
|
144 |
/** **/
|
|
145 |
/** CONFIGURATION MACROS **/
|
|
146 |
/** **/
|
|
147 |
/*************************************************************************/
|
|
148 |
/*************************************************************************/
|
|
149 |
|
|
150 |
/* define DEBUG_RASTER if you want to compile a debugging version */
|
|
151 |
/* #define DEBUG_RASTER */
|
|
152 |
|
|
153 |
/* define FT_RASTER_OPTION_ANTI_ALIASING if you want to support */
|
|
154 |
/* 5-levels anti-aliasing */
|
|
155 |
/* #define FT_RASTER_OPTION_ANTI_ALIASING */
|
|
156 |
|
|
157 |
/* The size of the two-lines intermediate bitmap used */
|
|
158 |
/* for anti-aliasing, in bytes. */
|
|
159 |
#define RASTER_GRAY_LINES 2048
|
|
160 |
|
|
161 |
|
|
162 |
/*************************************************************************/
|
|
163 |
/*************************************************************************/
|
|
164 |
/** **/
|
|
165 |
/** OTHER MACROS (do not change) **/
|
|
166 |
/** **/
|
|
167 |
/*************************************************************************/
|
|
168 |
/*************************************************************************/
|
|
169 |
|
|
170 |
/*************************************************************************/
|
|
171 |
/* */
|
|
172 |
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
|
|
173 |
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
|
|
174 |
/* messages during execution. */
|
|
175 |
/* */
|
|
176 |
#undef FT_COMPONENT
|
|
177 |
#define FT_COMPONENT trace_raster
|
|
178 |
|
|
179 |
|
|
180 |
#ifdef _STANDALONE_
|
|
181 |
|
|
182 |
|
|
183 |
/* This macro is used to indicate that a function parameter is unused. */
|
|
184 |
/* Its purpose is simply to reduce compiler warnings. Note also that */
|
|
185 |
/* simply defining it as `(void)x' doesn't avoid warnings with certain */
|
|
186 |
/* ANSI compilers (e.g. LCC). */
|
|
187 |
#define FT_UNUSED( x ) (x) = (x)
|
|
188 |
|
|
189 |
/* Disable the tracing mechanism for simplicity -- developers can */
|
|
190 |
/* activate it easily by redefining these two macros. */
|
|
191 |
#ifndef FT_ERROR
|
|
192 |
#define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
|
|
193 |
#endif
|
|
194 |
|
|
195 |
#ifndef FT_TRACE
|
|
196 |
#define FT_TRACE( x ) do { } while ( 0 ) /* nothing */
|
|
197 |
#define FT_TRACE1( x ) do { } while ( 0 ) /* nothing */
|
|
198 |
#define FT_TRACE6( x ) do { } while ( 0 ) /* nothing */
|
|
199 |
#endif
|
|
200 |
|
|
201 |
#define Raster_Err_None 0
|
|
202 |
#define Raster_Err_Not_Ini -1
|
|
203 |
#define Raster_Err_Overflow -2
|
|
204 |
#define Raster_Err_Neg_Height -3
|
|
205 |
#define Raster_Err_Invalid -4
|
|
206 |
#define Raster_Err_Unsupported -5
|
|
207 |
|
|
208 |
#define ft_memset memset
|
|
209 |
|
|
210 |
#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, raster_new_, \
|
|
211 |
raster_reset_, raster_set_mode_, \
|
|
212 |
raster_render_, raster_done_ ) \
|
|
213 |
const FT_Raster_Funcs class_ = \
|
|
214 |
{ \
|
|
215 |
glyph_format_, \
|
|
216 |
raster_new_, \
|
|
217 |
raster_reset_, \
|
|
218 |
raster_set_mode_, \
|
|
219 |
raster_render_, \
|
|
220 |
raster_done_ \
|
|
221 |
};
|
|
222 |
|
|
223 |
#else /* !_STANDALONE_ */
|
|
224 |
|
|
225 |
|
|
226 |
#include FT_INTERNAL_OBJECTS_H
|
|
227 |
#include FT_INTERNAL_DEBUG_H /* for FT_TRACE() and FT_ERROR() */
|
|
228 |
|
|
229 |
#include "rasterrs.h"
|
|
230 |
|
|
231 |
#define Raster_Err_None Raster_Err_Ok
|
|
232 |
#define Raster_Err_Not_Ini Raster_Err_Raster_Uninitialized
|
|
233 |
#define Raster_Err_Overflow Raster_Err_Raster_Overflow
|
|
234 |
#define Raster_Err_Neg_Height Raster_Err_Raster_Negative_Height
|
|
235 |
#define Raster_Err_Invalid Raster_Err_Invalid_Outline
|
|
236 |
#define Raster_Err_Unsupported Raster_Err_Cannot_Render_Glyph
|
|
237 |
|
|
238 |
|
|
239 |
#endif /* !_STANDALONE_ */
|
|
240 |
|
|
241 |
|
|
242 |
#ifndef FT_MEM_SET
|
|
243 |
#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
|
|
244 |
#endif
|
|
245 |
|
|
246 |
#ifndef FT_MEM_ZERO
|
|
247 |
#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
|
|
248 |
#endif
|
|
249 |
|
|
250 |
/* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */
|
|
251 |
/* typically a small value and the result of a*b is known to fit into */
|
|
252 |
/* 32 bits. */
|
|
253 |
#define FMulDiv( a, b, c ) ( (a) * (b) / (c) )
|
|
254 |
|
|
255 |
/* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */
|
|
256 |
/* for clipping computations. It simply uses the FT_MulDiv() function */
|
|
257 |
/* defined in `ftcalc.h'. */
|
|
258 |
#define SMulDiv FT_MulDiv
|
|
259 |
|
|
260 |
/* The rasterizer is a very general purpose component; please leave */
|
|
261 |
/* the following redefinitions there (you never know your target */
|
|
262 |
/* environment). */
|
|
263 |
|
|
264 |
#ifndef TRUE
|
|
265 |
#define TRUE 1
|
|
266 |
#endif
|
|
267 |
|
|
268 |
#ifndef FALSE
|
|
269 |
#define FALSE 0
|
|
270 |
#endif
|
|
271 |
|
|
272 |
#ifndef NULL
|
|
273 |
#define NULL (void*)0
|
|
274 |
#endif
|
|
275 |
|
|
276 |
#ifndef SUCCESS
|
|
277 |
#define SUCCESS 0
|
|
278 |
#endif
|
|
279 |
|
|
280 |
#ifndef FAILURE
|
|
281 |
#define FAILURE 1
|
|
282 |
#endif
|
|
283 |
|
|
284 |
|
|
285 |
#define MaxBezier 32 /* The maximum number of stacked Bezier curves. */
|
|
286 |
/* Setting this constant to more than 32 is a */
|
|
287 |
/* pure waste of space. */
|
|
288 |
|
|
289 |
#define Pixel_Bits 6 /* fractional bits of *input* coordinates */
|
|
290 |
|
|
291 |
|
|
292 |
/*************************************************************************/
|
|
293 |
/*************************************************************************/
|
|
294 |
/** **/
|
|
295 |
/** SIMPLE TYPE DECLARATIONS **/
|
|
296 |
/** **/
|
|
297 |
/*************************************************************************/
|
|
298 |
/*************************************************************************/
|
|
299 |
|
|
300 |
typedef int Int;
|
|
301 |
typedef unsigned int UInt;
|
|
302 |
typedef short Short;
|
|
303 |
typedef unsigned short UShort, *PUShort;
|
|
304 |
typedef long Long, *PLong;
|
|
305 |
|
|
306 |
typedef unsigned char Byte, *PByte;
|
|
307 |
typedef char Bool;
|
|
308 |
|
|
309 |
|
|
310 |
typedef union Alignment_
|
|
311 |
{
|
|
312 |
long l;
|
|
313 |
void* p;
|
|
314 |
void (*f)(void);
|
|
315 |
|
|
316 |
} Alignment, *PAlignment;
|
|
317 |
|
|
318 |
|
|
319 |
typedef struct TPoint_
|
|
320 |
{
|
|
321 |
Long x;
|
|
322 |
Long y;
|
|
323 |
|
|
324 |
} TPoint;
|
|
325 |
|
|
326 |
|
|
327 |
/* values for the `flags' bit field */
|
|
328 |
#define Flow_Up 0x8
|
|
329 |
#define Overshoot_Top 0x10
|
|
330 |
#define Overshoot_Bottom 0x20
|
|
331 |
|
|
332 |
|
|
333 |
/* States of each line, arc, and profile */
|
|
334 |
typedef enum TStates_
|
|
335 |
{
|
|
336 |
Unknown_State,
|
|
337 |
Ascending_State,
|
|
338 |
Descending_State,
|
|
339 |
Flat_State
|
|
340 |
|
|
341 |
} TStates;
|
|
342 |
|
|
343 |
|
|
344 |
typedef struct TProfile_ TProfile;
|
|
345 |
typedef TProfile* PProfile;
|
|
346 |
|
|
347 |
struct TProfile_
|
|
348 |
{
|
|
349 |
FT_F26Dot6 X; /* current coordinate during sweep */
|
|
350 |
PProfile link; /* link to next profile (various purposes) */
|
|
351 |
PLong offset; /* start of profile's data in render pool */
|
|
352 |
unsigned flags; /* Bit 0-2: drop-out mode */
|
|
353 |
/* Bit 3: profile orientation (up/down) */
|
|
354 |
/* Bit 4: is top profile? */
|
|
355 |
/* Bit 5: is bottom profile? */
|
|
356 |
long height; /* profile's height in scanlines */
|
|
357 |
long start; /* profile's starting scanline */
|
|
358 |
|
|
359 |
unsigned countL; /* number of lines to step before this */
|
|
360 |
/* profile becomes drawable */
|
|
361 |
|
|
362 |
PProfile next; /* next profile in same contour, used */
|
|
363 |
/* during drop-out control */
|
|
364 |
};
|
|
365 |
|
|
366 |
typedef PProfile TProfileList;
|
|
367 |
typedef PProfile* PProfileList;
|
|
368 |
|
|
369 |
|
|
370 |
/* Simple record used to implement a stack of bands, required */
|
|
371 |
/* by the sub-banding mechanism */
|
|
372 |
typedef struct TBand_
|
|
373 |
{
|
|
374 |
Short y_min; /* band's minimum */
|
|
375 |
Short y_max; /* band's maximum */
|
|
376 |
|
|
377 |
} TBand;
|
|
378 |
|
|
379 |
|
|
380 |
#define AlignProfileSize \
|
|
381 |
( ( sizeof ( TProfile ) + sizeof ( Alignment ) - 1 ) / sizeof ( long ) )
|
|
382 |
|
|
383 |
|
|
384 |
#ifdef FT_STATIC_RASTER
|
|
385 |
|
|
386 |
|
|
387 |
#define RAS_ARGS /* void */
|
|
388 |
#define RAS_ARG /* void */
|
|
389 |
|
|
390 |
#define RAS_VARS /* void */
|
|
391 |
#define RAS_VAR /* void */
|
|
392 |
|
|
393 |
#define FT_UNUSED_RASTER do { } while ( 0 )
|
|
394 |
|
|
395 |
|
|
396 |
#else /* !FT_STATIC_RASTER */
|
|
397 |
|
|
398 |
|
|
399 |
#define RAS_ARGS PWorker worker,
|
|
400 |
#define RAS_ARG PWorker worker
|
|
401 |
|
|
402 |
#define RAS_VARS worker,
|
|
403 |
#define RAS_VAR worker
|
|
404 |
|
|
405 |
#define FT_UNUSED_RASTER FT_UNUSED( worker )
|
|
406 |
|
|
407 |
|
|
408 |
#endif /* !FT_STATIC_RASTER */
|
|
409 |
|
|
410 |
|
|
411 |
typedef struct TWorker_ TWorker, *PWorker;
|
|
412 |
|
|
413 |
|
|
414 |
/* prototypes used for sweep function dispatch */
|
|
415 |
typedef void
|
|
416 |
Function_Sweep_Init( RAS_ARGS Short* min,
|
|
417 |
Short* max );
|
|
418 |
|
|
419 |
typedef void
|
|
420 |
Function_Sweep_Span( RAS_ARGS Short y,
|
|
421 |
FT_F26Dot6 x1,
|
|
422 |
FT_F26Dot6 x2,
|
|
423 |
PProfile left,
|
|
424 |
PProfile right );
|
|
425 |
|
|
426 |
typedef void
|
|
427 |
Function_Sweep_Step( RAS_ARG );
|
|
428 |
|
|
429 |
|
|
430 |
/* NOTE: These operations are only valid on 2's complement processors */
|
|
431 |
|
|
432 |
#define FLOOR( x ) ( (x) & -ras.precision )
|
|
433 |
#define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision )
|
|
434 |
#define TRUNC( x ) ( (signed long)(x) >> ras.precision_bits )
|
|
435 |
#define FRAC( x ) ( (x) & ( ras.precision - 1 ) )
|
|
436 |
#define SCALED( x ) ( ( (x) << ras.scale_shift ) - ras.precision_half )
|
|
437 |
|
|
438 |
#define IS_BOTTOM_OVERSHOOT( x ) ( CEILING( x ) - x >= ras.precision_half )
|
|
439 |
#define IS_TOP_OVERSHOOT( x ) ( x - FLOOR( x ) >= ras.precision_half )
|
|
440 |
|
|
441 |
/* The most used variables are positioned at the top of the structure. */
|
|
442 |
/* Thus, their offset can be coded with less opcodes, resulting in a */
|
|
443 |
/* smaller executable. */
|
|
444 |
|
|
445 |
struct TWorker_
|
|
446 |
{
|
|
447 |
Int precision_bits; /* precision related variables */
|
|
448 |
Int precision;
|
|
449 |
Int precision_half;
|
|
450 |
Int precision_shift;
|
|
451 |
Int precision_step;
|
|
452 |
Int precision_jitter;
|
|
453 |
|
|
454 |
Int scale_shift; /* == precision_shift for bitmaps */
|
|
455 |
/* == precision_shift+1 for pixmaps */
|
|
456 |
|
|
457 |
PLong buff; /* The profiles buffer */
|
|
458 |
PLong sizeBuff; /* Render pool size */
|
|
459 |
PLong maxBuff; /* Profiles buffer size */
|
|
460 |
PLong top; /* Current cursor in buffer */
|
|
461 |
|
|
462 |
FT_Error error;
|
|
463 |
|
|
464 |
Int numTurns; /* number of Y-turns in outline */
|
|
465 |
|
|
466 |
TPoint* arc; /* current Bezier arc pointer */
|
|
467 |
|
|
468 |
UShort bWidth; /* target bitmap width */
|
|
469 |
PByte bTarget; /* target bitmap buffer */
|
|
470 |
PByte gTarget; /* target pixmap buffer */
|
|
471 |
|
|
472 |
Long lastX, lastY;
|
|
473 |
Long minY, maxY;
|
|
474 |
|
|
475 |
UShort num_Profs; /* current number of profiles */
|
|
476 |
|
|
477 |
Bool fresh; /* signals a fresh new profile which */
|
|
478 |
/* `start' field must be completed */
|
|
479 |
Bool joint; /* signals that the last arc ended */
|
|
480 |
/* exactly on a scanline. Allows */
|
|
481 |
/* removal of doublets */
|
|
482 |
PProfile cProfile; /* current profile */
|
|
483 |
PProfile fProfile; /* head of linked list of profiles */
|
|
484 |
PProfile gProfile; /* contour's first profile in case */
|
|
485 |
/* of impact */
|
|
486 |
|
|
487 |
TStates state; /* rendering state */
|
|
488 |
|
|
489 |
FT_Bitmap target; /* description of target bit/pixmap */
|
|
490 |
FT_Outline outline;
|
|
491 |
|
|
492 |
Long traceOfs; /* current offset in target bitmap */
|
|
493 |
Long traceG; /* current offset in target pixmap */
|
|
494 |
|
|
495 |
Short traceIncr; /* sweep's increment in target bitmap */
|
|
496 |
|
|
497 |
Short gray_min_x; /* current min x during gray rendering */
|
|
498 |
Short gray_max_x; /* current max x during gray rendering */
|
|
499 |
|
|
500 |
/* dispatch variables */
|
|
501 |
|
|
502 |
Function_Sweep_Init* Proc_Sweep_Init;
|
|
503 |
Function_Sweep_Span* Proc_Sweep_Span;
|
|
504 |
Function_Sweep_Span* Proc_Sweep_Drop;
|
|
505 |
Function_Sweep_Step* Proc_Sweep_Step;
|
|
506 |
|
|
507 |
Byte dropOutControl; /* current drop_out control method */
|
|
508 |
|
|
509 |
Bool second_pass; /* indicates whether a horizontal pass */
|
|
510 |
/* should be performed to control */
|
|
511 |
/* drop-out accurately when calling */
|
|
512 |
/* Render_Glyph. Note that there is */
|
|
513 |
/* no horizontal pass during gray */
|
|
514 |
/* rendering. */
|
|
515 |
|
|
516 |
TPoint arcs[3 * MaxBezier + 1]; /* The Bezier stack */
|
|
517 |
|
|
518 |
TBand band_stack[16]; /* band stack used for sub-banding */
|
|
519 |
Int band_top; /* band stack top */
|
|
520 |
|
|
521 |
#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
|
522 |
|
|
523 |
Byte* grays;
|
|
524 |
|
|
525 |
Byte gray_lines[RASTER_GRAY_LINES];
|
|
526 |
/* Intermediate table used to render the */
|
|
527 |
/* graylevels pixmaps. */
|
|
528 |
/* gray_lines is a buffer holding two */
|
|
529 |
/* monochrome scanlines */
|
|
530 |
|
|
531 |
Short gray_width; /* width in bytes of one monochrome */
|
|
532 |
/* intermediate scanline of gray_lines. */
|
|
533 |
/* Each gray pixel takes 2 bits long there */
|
|
534 |
|
|
535 |
/* The gray_lines must hold 2 lines, thus with size */
|
|
536 |
/* in bytes of at least `gray_width*2'. */
|
|
537 |
|
|
538 |
#endif /* FT_RASTER_ANTI_ALIASING */
|
|
539 |
|
|
540 |
};
|
|
541 |
|
|
542 |
|
|
543 |
typedef struct TRaster_
|
|
544 |
{
|
|
545 |
char* buffer;
|
|
546 |
long buffer_size;
|
|
547 |
void* memory;
|
|
548 |
PWorker worker;
|
|
549 |
Byte grays[5];
|
|
550 |
Short gray_width;
|
|
551 |
|
|
552 |
} TRaster, *PRaster;
|
|
553 |
|
|
554 |
#ifdef FT_STATIC_RASTER
|
|
555 |
|
|
556 |
static TWorker cur_ras;
|
|
557 |
#define ras cur_ras
|
|
558 |
|
|
559 |
#else /* !FT_STATIC_RASTER */
|
|
560 |
|
|
561 |
#define ras (*worker)
|
|
562 |
|
|
563 |
#endif /* !FT_STATIC_RASTER */
|
|
564 |
|
|
565 |
|
|
566 |
#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
|
567 |
|
|
568 |
/* A lookup table used to quickly count set bits in four gray 2x2 */
|
|
569 |
/* cells. The values of the table have been produced with the */
|
|
570 |
/* following code: */
|
|
571 |
/* */
|
|
572 |
/* for ( i = 0; i < 256; i++ ) */
|
|
573 |
/* { */
|
|
574 |
/* l = 0; */
|
|
575 |
/* j = i; */
|
|
576 |
/* */
|
|
577 |
/* for ( c = 0; c < 4; c++ ) */
|
|
578 |
/* { */
|
|
579 |
/* l <<= 4; */
|
|
580 |
/* */
|
|
581 |
/* if ( j & 0x80 ) l++; */
|
|
582 |
/* if ( j & 0x40 ) l++; */
|
|
583 |
/* */
|
|
584 |
/* j = ( j << 2 ) & 0xFF; */
|
|
585 |
/* } */
|
|
586 |
/* printf( "0x%04X", l ); */
|
|
587 |
/* } */
|
|
588 |
/* */
|
|
589 |
|
|
590 |
static const short count_table[256] =
|
|
591 |
{
|
|
592 |
0x0000, 0x0001, 0x0001, 0x0002, 0x0010, 0x0011, 0x0011, 0x0012,
|
|
593 |
0x0010, 0x0011, 0x0011, 0x0012, 0x0020, 0x0021, 0x0021, 0x0022,
|
|
594 |
0x0100, 0x0101, 0x0101, 0x0102, 0x0110, 0x0111, 0x0111, 0x0112,
|
|
595 |
0x0110, 0x0111, 0x0111, 0x0112, 0x0120, 0x0121, 0x0121, 0x0122,
|
|
596 |
0x0100, 0x0101, 0x0101, 0x0102, 0x0110, 0x0111, 0x0111, 0x0112,
|
|
597 |
0x0110, 0x0111, 0x0111, 0x0112, 0x0120, 0x0121, 0x0121, 0x0122,
|
|
598 |
0x0200, 0x0201, 0x0201, 0x0202, 0x0210, 0x0211, 0x0211, 0x0212,
|
|
599 |
0x0210, 0x0211, 0x0211, 0x0212, 0x0220, 0x0221, 0x0221, 0x0222,
|
|
600 |
0x1000, 0x1001, 0x1001, 0x1002, 0x1010, 0x1011, 0x1011, 0x1012,
|
|
601 |
0x1010, 0x1011, 0x1011, 0x1012, 0x1020, 0x1021, 0x1021, 0x1022,
|
|
602 |
0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
|
603 |
0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
|
604 |
0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
|
605 |
0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
|
606 |
0x1200, 0x1201, 0x1201, 0x1202, 0x1210, 0x1211, 0x1211, 0x1212,
|
|
607 |
0x1210, 0x1211, 0x1211, 0x1212, 0x1220, 0x1221, 0x1221, 0x1222,
|
|
608 |
0x1000, 0x1001, 0x1001, 0x1002, 0x1010, 0x1011, 0x1011, 0x1012,
|
|
609 |
0x1010, 0x1011, 0x1011, 0x1012, 0x1020, 0x1021, 0x1021, 0x1022,
|
|
610 |
0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
|
611 |
0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
|
612 |
0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
|
613 |
0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
|
614 |
0x1200, 0x1201, 0x1201, 0x1202, 0x1210, 0x1211, 0x1211, 0x1212,
|
|
615 |
0x1210, 0x1211, 0x1211, 0x1212, 0x1220, 0x1221, 0x1221, 0x1222,
|
|
616 |
0x2000, 0x2001, 0x2001, 0x2002, 0x2010, 0x2011, 0x2011, 0x2012,
|
|
617 |
0x2010, 0x2011, 0x2011, 0x2012, 0x2020, 0x2021, 0x2021, 0x2022,
|
|
618 |
0x2100, 0x2101, 0x2101, 0x2102, 0x2110, 0x2111, 0x2111, 0x2112,
|
|
619 |
0x2110, 0x2111, 0x2111, 0x2112, 0x2120, 0x2121, 0x2121, 0x2122,
|
|
620 |
0x2100, 0x2101, 0x2101, 0x2102, 0x2110, 0x2111, 0x2111, 0x2112,
|
|
621 |
0x2110, 0x2111, 0x2111, 0x2112, 0x2120, 0x2121, 0x2121, 0x2122,
|
|
622 |
0x2200, 0x2201, 0x2201, 0x2202, 0x2210, 0x2211, 0x2211, 0x2212,
|
|
623 |
0x2210, 0x2211, 0x2211, 0x2212, 0x2220, 0x2221, 0x2221, 0x2222
|
|
624 |
};
|
|
625 |
|
|
626 |
#endif /* FT_RASTER_OPTION_ANTI_ALIASING */
|
|
627 |
|
|
628 |
|
|
629 |
|
|
630 |
/*************************************************************************/
|
|
631 |
/*************************************************************************/
|
|
632 |
/** **/
|
|
633 |
/** PROFILES COMPUTATION **/
|
|
634 |
/** **/
|
|
635 |
/*************************************************************************/
|
|
636 |
/*************************************************************************/
|
|
637 |
|
|
638 |
|
|
639 |
/*************************************************************************/
|
|
640 |
/* */
|
|
641 |
/* <Function> */
|
|
642 |
/* Set_High_Precision */
|
|
643 |
/* */
|
|
644 |
/* <Description> */
|
|
645 |
/* Set precision variables according to param flag. */
|
|
646 |
/* */
|
|
647 |
/* <Input> */
|
|
648 |
/* High :: Set to True for high precision (typically for ppem < 18), */
|
|
649 |
/* false otherwise. */
|
|
650 |
/* */
|
|
651 |
static void
|
|
652 |
Set_High_Precision( RAS_ARGS Int High )
|
|
653 |
{
|
|
654 |
/*
|
|
655 |
* `precision_step' is used in `Bezier_Up' to decide when to split a
|
|
656 |
* given y-monotonous Bezier arc that crosses a scanline before
|
|
657 |
* approximating it as a straight segment. The default value of 32 (for
|
|
658 |
* low accuracy) corresponds to
|
|
659 |
*
|
|
660 |
* 32 / 64 == 0.5 pixels ,
|
|
661 |
*
|
|
662 |
* while for the high accuracy case we have
|
|
663 |
*
|
|
664 |
* 256/ (1 << 12) = 0.0625 pixels .
|
|
665 |
*
|
|
666 |
* `precision_jitter' is an epsilon threshold used in
|
|
667 |
* `Vertical_Sweep_Span' to deal with small imperfections in the Bezier
|
|
668 |
* decomposition (after all, we are working with approximations only);
|
|
669 |
* it avoids switching on additional pixels which would cause artifacts
|
|
670 |
* otherwise.
|
|
671 |
*
|
|
672 |
* The value of `precision_jitter' has been determined heuristically.
|
|
673 |
*
|
|
674 |
*/
|
|
675 |
|
|
676 |
if ( High )
|
|
677 |
{
|
|
678 |
ras.precision_bits = 12;
|
|
679 |
ras.precision_step = 256;
|
|
680 |
ras.precision_jitter = 30;
|
|
681 |
}
|
|
682 |
else
|
|
683 |
{
|
|
684 |
ras.precision_bits = 6;
|
|
685 |
ras.precision_step = 32;
|
|
686 |
ras.precision_jitter = 2;
|
|
687 |
}
|
|
688 |
|
|
689 |
FT_TRACE6(( "Set_High_Precision(%s)\n", High ? "true" : "false" ));
|
|
690 |
|
|
691 |
ras.precision = 1 << ras.precision_bits;
|
|
692 |
ras.precision_half = ras.precision / 2;
|
|
693 |
ras.precision_shift = ras.precision_bits - Pixel_Bits;
|
|
694 |
}
|
|
695 |
|
|
696 |
|
|
697 |
/*************************************************************************/
|
|
698 |
/* */
|
|
699 |
/* <Function> */
|
|
700 |
/* New_Profile */
|
|
701 |
/* */
|
|
702 |
/* <Description> */
|
|
703 |
/* Create a new profile in the render pool. */
|
|
704 |
/* */
|
|
705 |
/* <Input> */
|
|
706 |
/* aState :: The state/orientation of the new profile. */
|
|
707 |
/* */
|
|
708 |
/* overshoot :: Whether the profile's unrounded start position */
|
|
709 |
/* differs by at least a half pixel. */
|
|
710 |
/* */
|
|
711 |
/* <Return> */
|
|
712 |
/* SUCCESS on success. FAILURE in case of overflow or of incoherent */
|
|
713 |
/* profile. */
|
|
714 |
/* */
|
|
715 |
static Bool
|
|
716 |
New_Profile( RAS_ARGS TStates aState,
|
|
717 |
Bool overshoot )
|
|
718 |
{
|
|
719 |
if ( !ras.fProfile )
|
|
720 |
{
|
|
721 |
ras.cProfile = (PProfile)ras.top;
|
|
722 |
ras.fProfile = ras.cProfile;
|
|
723 |
ras.top += AlignProfileSize;
|
|
724 |
}
|
|
725 |
|
|
726 |
if ( ras.top >= ras.maxBuff )
|
|
727 |
{
|
|
728 |
ras.error = Raster_Err_Overflow;
|
|
729 |
return FAILURE;
|
|
730 |
}
|
|
731 |
|
|
732 |
ras.cProfile->flags = 0;
|
|
733 |
ras.cProfile->start = 0;
|
|
734 |
ras.cProfile->height = 0;
|
|
735 |
ras.cProfile->offset = ras.top;
|
|
736 |
ras.cProfile->link = (PProfile)0;
|
|
737 |
ras.cProfile->next = (PProfile)0;
|
|
738 |
ras.cProfile->flags = ras.dropOutControl;
|
|
739 |
|
|
740 |
switch ( aState )
|
|
741 |
{
|
|
742 |
case Ascending_State:
|
|
743 |
ras.cProfile->flags |= Flow_Up;
|
|
744 |
if ( overshoot )
|
|
745 |
ras.cProfile->flags |= Overshoot_Bottom;
|
|
746 |
|
|
747 |
FT_TRACE6(( "New ascending profile = %p\n", ras.cProfile ));
|
|
748 |
break;
|
|
749 |
|
|
750 |
case Descending_State:
|
|
751 |
if ( overshoot )
|
|
752 |
ras.cProfile->flags |= Overshoot_Top;
|
|
753 |
FT_TRACE6(( "New descending profile = %p\n", ras.cProfile ));
|
|
754 |
break;
|
|
755 |
|
|
756 |
default:
|
|
757 |
FT_ERROR(( "New_Profile: invalid profile direction\n" ));
|
|
758 |
ras.error = Raster_Err_Invalid;
|
|
759 |
return FAILURE;
|
|
760 |
}
|
|
761 |
|
|
762 |
if ( !ras.gProfile )
|
|
763 |
ras.gProfile = ras.cProfile;
|
|
764 |
|
|
765 |
ras.state = aState;
|
|
766 |
ras.fresh = TRUE;
|
|
767 |
ras.joint = FALSE;
|
|
768 |
|
|
769 |
return SUCCESS;
|
|
770 |
}
|
|
771 |
|
|
772 |
|
|
773 |
/*************************************************************************/
|
|
774 |
/* */
|
|
775 |
/* <Function> */
|
|
776 |
/* End_Profile */
|
|
777 |
/* */
|
|
778 |
/* <Description> */
|
|
779 |
/* Finalize the current profile. */
|
|
780 |
/* */
|
|
781 |
/* <Input> */
|
|
782 |
/* overshoot :: Whether the profile's unrounded end position differs */
|
|
783 |
/* by at least a half pixel. */
|
|
784 |
/* */
|
|
785 |
/* <Return> */
|
|
786 |
/* SUCCESS on success. FAILURE in case of overflow or incoherency. */
|
|
787 |
/* */
|
|
788 |
static Bool
|
|
789 |
End_Profile( RAS_ARGS Bool overshoot )
|
|
790 |
{
|
|
791 |
Long h;
|
|
792 |
PProfile oldProfile;
|
|
793 |
|
|
794 |
|
|
795 |
h = (Long)( ras.top - ras.cProfile->offset );
|
|
796 |
|
|
797 |
if ( h < 0 )
|
|
798 |
{
|
|
799 |
FT_ERROR(( "End_Profile: negative height encountered\n" ));
|
|
800 |
ras.error = Raster_Err_Neg_Height;
|
|
801 |
return FAILURE;
|
|
802 |
}
|
|
803 |
|
|
804 |
if ( h > 0 )
|
|
805 |
{
|
|
806 |
FT_TRACE6(( "Ending profile %p, start = %ld, height = %ld\n",
|
|
807 |
ras.cProfile, ras.cProfile->start, h ));
|
|
808 |
|
|
809 |
ras.cProfile->height = h;
|
|
810 |
if ( overshoot )
|
|
811 |
{
|
|
812 |
if ( ras.cProfile->flags & Flow_Up )
|
|
813 |
ras.cProfile->flags |= Overshoot_Top;
|
|
814 |
else
|
|
815 |
ras.cProfile->flags |= Overshoot_Bottom;
|
|
816 |
}
|
|
817 |
|
|
818 |
oldProfile = ras.cProfile;
|
|
819 |
ras.cProfile = (PProfile)ras.top;
|
|
820 |
|
|
821 |
ras.top += AlignProfileSize;
|
|
822 |
|
|
823 |
ras.cProfile->height = 0;
|
|
824 |
ras.cProfile->offset = ras.top;
|
|
825 |
|
|
826 |
oldProfile->next = ras.cProfile;
|
|
827 |
ras.num_Profs++;
|
|
828 |
}
|
|
829 |
|
|
830 |
if ( ras.top >= ras.maxBuff )
|
|
831 |
{
|
|
832 |
FT_TRACE1(( "overflow in End_Profile\n" ));
|
|
833 |
ras.error = Raster_Err_Overflow;
|
|
834 |
return FAILURE;
|
|
835 |
}
|
|
836 |
|
|
837 |
ras.joint = FALSE;
|
|
838 |
|
|
839 |
return SUCCESS;
|
|
840 |
}
|
|
841 |
|
|
842 |
|
|
843 |
/*************************************************************************/
|
|
844 |
/* */
|
|
845 |
/* <Function> */
|
|
846 |
/* Insert_Y_Turn */
|
|
847 |
/* */
|
|
848 |
/* <Description> */
|
|
849 |
/* Insert a salient into the sorted list placed on top of the render */
|
|
850 |
/* pool. */
|
|
851 |
/* */
|
|
852 |
/* <Input> */
|
|
853 |
/* New y scanline position. */
|
|
854 |
/* */
|
|
855 |
/* <Return> */
|
|
856 |
/* SUCCESS on success. FAILURE in case of overflow. */
|
|
857 |
/* */
|
|
858 |
static Bool
|
|
859 |
Insert_Y_Turn( RAS_ARGS Int y )
|
|
860 |
{
|
|
861 |
PLong y_turns;
|
|
862 |
Int y2, n;
|
|
863 |
|
|
864 |
|
|
865 |
n = ras.numTurns - 1;
|
|
866 |
y_turns = ras.sizeBuff - ras.numTurns;
|
|
867 |
|
|
868 |
/* look for first y value that is <= */
|
|
869 |
while ( n >= 0 && y < y_turns[n] )
|
|
870 |
n--;
|
|
871 |
|
|
872 |
/* if it is <, simply insert it, ignore if == */
|
|
873 |
if ( n >= 0 && y > y_turns[n] )
|
|
874 |
while ( n >= 0 )
|
|
875 |
{
|
|
876 |
y2 = (Int)y_turns[n];
|
|
877 |
y_turns[n] = y;
|
|
878 |
y = y2;
|
|
879 |
n--;
|
|
880 |
}
|
|
881 |
|
|
882 |
if ( n < 0 )
|
|
883 |
{
|
|
884 |
ras.maxBuff--;
|
|
885 |
if ( ras.maxBuff <= ras.top )
|
|
886 |
{
|
|
887 |
ras.error = Raster_Err_Overflow;
|
|
888 |
return FAILURE;
|
|
889 |
}
|
|
890 |
ras.numTurns++;
|
|
891 |
ras.sizeBuff[-ras.numTurns] = y;
|
|
892 |
}
|
|
893 |
|
|
894 |
return SUCCESS;
|
|
895 |
}
|
|
896 |
|
|
897 |
|
|
898 |
/*************************************************************************/
|
|
899 |
/* */
|
|
900 |
/* <Function> */
|
|
901 |
/* Finalize_Profile_Table */
|
|
902 |
/* */
|
|
903 |
/* <Description> */
|
|
904 |
/* Adjust all links in the profiles list. */
|
|
905 |
/* */
|
|
906 |
/* <Return> */
|
|
907 |
/* SUCCESS on success. FAILURE in case of overflow. */
|
|
908 |
/* */
|
|
909 |
static Bool
|
|
910 |
Finalize_Profile_Table( RAS_ARG )
|
|
911 |
{
|
|
912 |
Int bottom, top;
|
|
913 |
UShort n;
|
|
914 |
PProfile p;
|
|
915 |
|
|
916 |
|
|
917 |
n = ras.num_Profs;
|
|
918 |
p = ras.fProfile;
|
|
919 |
|
|
920 |
if ( n > 1 && p )
|
|
921 |
{
|
|
922 |
while ( n > 0 )
|
|
923 |
{
|
|
924 |
if ( n > 1 )
|
|
925 |
p->link = (PProfile)( p->offset + p->height );
|
|
926 |
else
|
|
927 |
p->link = NULL;
|
|
928 |
|
|
929 |
if ( p->flags & Flow_Up )
|
|
930 |
{
|
|
931 |
bottom = (Int)p->start;
|
|
932 |
top = (Int)( p->start + p->height - 1 );
|
|
933 |
}
|
|
934 |
else
|
|
935 |
{
|
|
936 |
bottom = (Int)( p->start - p->height + 1 );
|
|
937 |
top = (Int)p->start;
|
|
938 |
p->start = bottom;
|
|
939 |
p->offset += p->height - 1;
|
|
940 |
}
|
|
941 |
|
|
942 |
if ( Insert_Y_Turn( RAS_VARS bottom ) ||
|
|
943 |
Insert_Y_Turn( RAS_VARS top + 1 ) )
|
|
944 |
return FAILURE;
|
|
945 |
|
|
946 |
p = p->link;
|
|
947 |
n--;
|
|
948 |
}
|
|
949 |
}
|
|
950 |
else
|
|
951 |
ras.fProfile = NULL;
|
|
952 |
|
|
953 |
return SUCCESS;
|
|
954 |
}
|
|
955 |
|
|
956 |
|
|
957 |
/*************************************************************************/
|
|
958 |
/* */
|
|
959 |
/* <Function> */
|
|
960 |
/* Split_Conic */
|
|
961 |
/* */
|
|
962 |
/* <Description> */
|
|
963 |
/* Subdivide one conic Bezier into two joint sub-arcs in the Bezier */
|
|
964 |
/* stack. */
|
|
965 |
/* */
|
|
966 |
/* <Input> */
|
|
967 |
/* None (subdivided Bezier is taken from the top of the stack). */
|
|
968 |
/* */
|
|
969 |
/* <Note> */
|
|
970 |
/* This routine is the `beef' of this component. It is _the_ inner */
|
|
971 |
/* loop that should be optimized to hell to get the best performance. */
|
|
972 |
/* */
|
|
973 |
static void
|
|
974 |
Split_Conic( TPoint* base )
|
|
975 |
{
|
|
976 |
Long a, b;
|
|
977 |
|
|
978 |
|
|
979 |
base[4].x = base[2].x;
|
|
980 |
b = base[1].x;
|
|
981 |
a = base[3].x = ( base[2].x + b ) / 2;
|
|
982 |
b = base[1].x = ( base[0].x + b ) / 2;
|
|
983 |
base[2].x = ( a + b ) / 2;
|
|
984 |
|
|
985 |
base[4].y = base[2].y;
|
|
986 |
b = base[1].y;
|
|
987 |
a = base[3].y = ( base[2].y + b ) / 2;
|
|
988 |
b = base[1].y = ( base[0].y + b ) / 2;
|
|
989 |
base[2].y = ( a + b ) / 2;
|
|
990 |
|
|
991 |
/* hand optimized. gcc doesn't seem to be too good at common */
|
|
992 |
/* expression substitution and instruction scheduling ;-) */
|
|
993 |
}
|
|
994 |
|
|
995 |
|
|
996 |
/*************************************************************************/
|
|
997 |
/* */
|
|
998 |
/* <Function> */
|
|
999 |
/* Split_Cubic */
|
|
1000 |
/* */
|
|
1001 |
/* <Description> */
|
|
1002 |
/* Subdivide a third-order Bezier arc into two joint sub-arcs in the */
|
|
1003 |
/* Bezier stack. */
|
|
1004 |
/* */
|
|
1005 |
/* <Note> */
|
|
1006 |
/* This routine is the `beef' of the component. It is one of _the_ */
|
|
1007 |
/* inner loops that should be optimized like hell to get the best */
|
|
1008 |
/* performance. */
|
|
1009 |
/* */
|
|
1010 |
static void
|
|
1011 |
Split_Cubic( TPoint* base )
|
|
1012 |
{
|
|
1013 |
Long a, b, c, d;
|
|
1014 |
|
|
1015 |
|
|
1016 |
base[6].x = base[3].x;
|
|
1017 |
c = base[1].x;
|
|
1018 |
d = base[2].x;
|
|
1019 |
base[1].x = a = ( base[0].x + c + 1 ) >> 1;
|
|
1020 |
base[5].x = b = ( base[3].x + d + 1 ) >> 1;
|
|
1021 |
c = ( c + d + 1 ) >> 1;
|
|
1022 |
base[2].x = a = ( a + c + 1 ) >> 1;
|
|
1023 |
base[4].x = b = ( b + c + 1 ) >> 1;
|
|
1024 |
base[3].x = ( a + b + 1 ) >> 1;
|
|
1025 |
|
|
1026 |
base[6].y = base[3].y;
|
|
1027 |
c = base[1].y;
|
|
1028 |
d = base[2].y;
|
|
1029 |
base[1].y = a = ( base[0].y + c + 1 ) >> 1;
|
|
1030 |
base[5].y = b = ( base[3].y + d + 1 ) >> 1;
|
|
1031 |
c = ( c + d + 1 ) >> 1;
|
|
1032 |
base[2].y = a = ( a + c + 1 ) >> 1;
|
|
1033 |
base[4].y = b = ( b + c + 1 ) >> 1;
|
|
1034 |
base[3].y = ( a + b + 1 ) >> 1;
|
|
1035 |
}
|
|
1036 |
|
|
1037 |
|
|
1038 |
/*************************************************************************/
|
|
1039 |
/* */
|
|
1040 |
/* <Function> */
|
|
1041 |
/* Line_Up */
|
|
1042 |
/* */
|
|
1043 |
/* <Description> */
|
|
1044 |
/* Compute the x-coordinates of an ascending line segment and store */
|
|
1045 |
/* them in the render pool. */
|
|
1046 |
/* */
|
|
1047 |
/* <Input> */
|
|
1048 |
/* x1 :: The x-coordinate of the segment's start point. */
|
|
1049 |
/* */
|
|
1050 |
/* y1 :: The y-coordinate of the segment's start point. */
|
|
1051 |
/* */
|
|
1052 |
/* x2 :: The x-coordinate of the segment's end point. */
|
|
1053 |
/* */
|
|
1054 |
/* y2 :: The y-coordinate of the segment's end point. */
|
|
1055 |
/* */
|
|
1056 |
/* miny :: A lower vertical clipping bound value. */
|
|
1057 |
/* */
|
|
1058 |
/* maxy :: An upper vertical clipping bound value. */
|
|
1059 |
/* */
|
|
1060 |
/* <Return> */
|
|
1061 |
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
1062 |
/* */
|
|
1063 |
static Bool
|
|
1064 |
Line_Up( RAS_ARGS Long x1,
|
|
1065 |
Long y1,
|
|
1066 |
Long x2,
|
|
1067 |
Long y2,
|
|
1068 |
Long miny,
|
|
1069 |
Long maxy )
|
|
1070 |
{
|
|
1071 |
Long Dx, Dy;
|
|
1072 |
Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */
|
|
1073 |
Long Ix, Rx, Ax;
|
|
1074 |
|
|
1075 |
PLong top;
|
|
1076 |
|
|
1077 |
|
|
1078 |
Dx = x2 - x1;
|
|
1079 |
Dy = y2 - y1;
|
|
1080 |
|
|
1081 |
if ( Dy <= 0 || y2 < miny || y1 > maxy )
|
|
1082 |
return SUCCESS;
|
|
1083 |
|
|
1084 |
if ( y1 < miny )
|
|
1085 |
{
|
|
1086 |
/* Take care: miny-y1 can be a very large value; we use */
|
|
1087 |
/* a slow MulDiv function to avoid clipping bugs */
|
|
1088 |
x1 += SMulDiv( Dx, miny - y1, Dy );
|
|
1089 |
e1 = (Int)TRUNC( miny );
|
|
1090 |
f1 = 0;
|
|
1091 |
}
|
|
1092 |
else
|
|
1093 |
{
|
|
1094 |
e1 = (Int)TRUNC( y1 );
|
|
1095 |
f1 = (Int)FRAC( y1 );
|
|
1096 |
}
|
|
1097 |
|
|
1098 |
if ( y2 > maxy )
|
|
1099 |
{
|
|
1100 |
/* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */
|
|
1101 |
e2 = (Int)TRUNC( maxy );
|
|
1102 |
f2 = 0;
|
|
1103 |
}
|
|
1104 |
else
|
|
1105 |
{
|
|
1106 |
e2 = (Int)TRUNC( y2 );
|
|
1107 |
f2 = (Int)FRAC( y2 );
|
|
1108 |
}
|
|
1109 |
|
|
1110 |
if ( f1 > 0 )
|
|
1111 |
{
|
|
1112 |
if ( e1 == e2 )
|
|
1113 |
return SUCCESS;
|
|
1114 |
else
|
|
1115 |
{
|
|
1116 |
x1 += SMulDiv( Dx, ras.precision - f1, Dy );
|
|
1117 |
e1 += 1;
|
|
1118 |
}
|
|
1119 |
}
|
|
1120 |
else
|
|
1121 |
if ( ras.joint )
|
|
1122 |
{
|
|
1123 |
ras.top--;
|
|
1124 |
ras.joint = FALSE;
|
|
1125 |
}
|
|
1126 |
|
|
1127 |
ras.joint = (char)( f2 == 0 );
|
|
1128 |
|
|
1129 |
if ( ras.fresh )
|
|
1130 |
{
|
|
1131 |
ras.cProfile->start = e1;
|
|
1132 |
ras.fresh = FALSE;
|
|
1133 |
}
|
|
1134 |
|
|
1135 |
size = e2 - e1 + 1;
|
|
1136 |
if ( ras.top + size >= ras.maxBuff )
|
|
1137 |
{
|
|
1138 |
ras.error = Raster_Err_Overflow;
|
|
1139 |
return FAILURE;
|
|
1140 |
}
|
|
1141 |
|
|
1142 |
if ( Dx > 0 )
|
|
1143 |
{
|
|
1144 |
Ix = SMulDiv( ras.precision, Dx, Dy);
|
|
1145 |
Rx = ( ras.precision * Dx ) % Dy;
|
|
1146 |
Dx = 1;
|
|
1147 |
}
|
|
1148 |
else
|
|
1149 |
{
|
|
1150 |
Ix = SMulDiv( ras.precision, -Dx, Dy) * -1;
|
|
1151 |
Rx = ( ras.precision * -Dx ) % Dy;
|
|
1152 |
Dx = -1;
|
|
1153 |
}
|
|
1154 |
|
|
1155 |
Ax = -Dy;
|
|
1156 |
top = ras.top;
|
|
1157 |
|
|
1158 |
while ( size > 0 )
|
|
1159 |
{
|
|
1160 |
*top++ = x1;
|
|
1161 |
|
|
1162 |
x1 += Ix;
|
|
1163 |
Ax += Rx;
|
|
1164 |
if ( Ax >= 0 )
|
|
1165 |
{
|
|
1166 |
Ax -= Dy;
|
|
1167 |
x1 += Dx;
|
|
1168 |
}
|
|
1169 |
size--;
|
|
1170 |
}
|
|
1171 |
|
|
1172 |
ras.top = top;
|
|
1173 |
return SUCCESS;
|
|
1174 |
}
|
|
1175 |
|
|
1176 |
|
|
1177 |
/*************************************************************************/
|
|
1178 |
/* */
|
|
1179 |
/* <Function> */
|
|
1180 |
/* Line_Down */
|
|
1181 |
/* */
|
|
1182 |
/* <Description> */
|
|
1183 |
/* Compute the x-coordinates of an descending line segment and store */
|
|
1184 |
/* them in the render pool. */
|
|
1185 |
/* */
|
|
1186 |
/* <Input> */
|
|
1187 |
/* x1 :: The x-coordinate of the segment's start point. */
|
|
1188 |
/* */
|
|
1189 |
/* y1 :: The y-coordinate of the segment's start point. */
|
|
1190 |
/* */
|
|
1191 |
/* x2 :: The x-coordinate of the segment's end point. */
|
|
1192 |
/* */
|
|
1193 |
/* y2 :: The y-coordinate of the segment's end point. */
|
|
1194 |
/* */
|
|
1195 |
/* miny :: A lower vertical clipping bound value. */
|
|
1196 |
/* */
|
|
1197 |
/* maxy :: An upper vertical clipping bound value. */
|
|
1198 |
/* */
|
|
1199 |
/* <Return> */
|
|
1200 |
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
1201 |
/* */
|
|
1202 |
static Bool
|
|
1203 |
Line_Down( RAS_ARGS Long x1,
|
|
1204 |
Long y1,
|
|
1205 |
Long x2,
|
|
1206 |
Long y2,
|
|
1207 |
Long miny,
|
|
1208 |
Long maxy )
|
|
1209 |
{
|
|
1210 |
Bool result, fresh;
|
|
1211 |
|
|
1212 |
|
|
1213 |
fresh = ras.fresh;
|
|
1214 |
|
|
1215 |
result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny );
|
|
1216 |
|
|
1217 |
if ( fresh && !ras.fresh )
|
|
1218 |
ras.cProfile->start = -ras.cProfile->start;
|
|
1219 |
|
|
1220 |
return result;
|
|
1221 |
}
|
|
1222 |
|
|
1223 |
|
|
1224 |
/* A function type describing the functions used to split Bezier arcs */
|
|
1225 |
typedef void (*TSplitter)( TPoint* base );
|
|
1226 |
|
|
1227 |
|
|
1228 |
/*************************************************************************/
|
|
1229 |
/* */
|
|
1230 |
/* <Function> */
|
|
1231 |
/* Bezier_Up */
|
|
1232 |
/* */
|
|
1233 |
/* <Description> */
|
|
1234 |
/* Compute the x-coordinates of an ascending Bezier arc and store */
|
|
1235 |
/* them in the render pool. */
|
|
1236 |
/* */
|
|
1237 |
/* <Input> */
|
|
1238 |
/* degree :: The degree of the Bezier arc (either 2 or 3). */
|
|
1239 |
/* */
|
|
1240 |
/* splitter :: The function to split Bezier arcs. */
|
|
1241 |
/* */
|
|
1242 |
/* miny :: A lower vertical clipping bound value. */
|
|
1243 |
/* */
|
|
1244 |
/* maxy :: An upper vertical clipping bound value. */
|
|
1245 |
/* */
|
|
1246 |
/* <Return> */
|
|
1247 |
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
1248 |
/* */
|
|
1249 |
static Bool
|
|
1250 |
Bezier_Up( RAS_ARGS Int degree,
|
|
1251 |
TSplitter splitter,
|
|
1252 |
Long miny,
|
|
1253 |
Long maxy )
|
|
1254 |
{
|
|
1255 |
Long y1, y2, e, e2, e0;
|
|
1256 |
Short f1;
|
|
1257 |
|
|
1258 |
TPoint* arc;
|
|
1259 |
TPoint* start_arc;
|
|
1260 |
|
|
1261 |
PLong top;
|
|
1262 |
|
|
1263 |
|
|
1264 |
arc = ras.arc;
|
|
1265 |
y1 = arc[degree].y;
|
|
1266 |
y2 = arc[0].y;
|
|
1267 |
top = ras.top;
|
|
1268 |
|
|
1269 |
if ( y2 < miny || y1 > maxy )
|
|
1270 |
goto Fin;
|
|
1271 |
|
|
1272 |
e2 = FLOOR( y2 );
|
|
1273 |
|
|
1274 |
if ( e2 > maxy )
|
|
1275 |
e2 = maxy;
|
|
1276 |
|
|
1277 |
e0 = miny;
|
|
1278 |
|
|
1279 |
if ( y1 < miny )
|
|
1280 |
e = miny;
|
|
1281 |
else
|
|
1282 |
{
|
|
1283 |
e = CEILING( y1 );
|
|
1284 |
f1 = (Short)( FRAC( y1 ) );
|
|
1285 |
e0 = e;
|
|
1286 |
|
|
1287 |
if ( f1 == 0 )
|
|
1288 |
{
|
|
1289 |
if ( ras.joint )
|
|
1290 |
{
|
|
1291 |
top--;
|
|
1292 |
ras.joint = FALSE;
|
|
1293 |
}
|
|
1294 |
|
|
1295 |
*top++ = arc[degree].x;
|
|
1296 |
|
|
1297 |
e += ras.precision;
|
|
1298 |
}
|
|
1299 |
}
|
|
1300 |
|
|
1301 |
if ( ras.fresh )
|
|
1302 |
{
|
|
1303 |
ras.cProfile->start = TRUNC( e0 );
|
|
1304 |
ras.fresh = FALSE;
|
|
1305 |
}
|
|
1306 |
|
|
1307 |
if ( e2 < e )
|
|
1308 |
goto Fin;
|
|
1309 |
|
|
1310 |
if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff )
|
|
1311 |
{
|
|
1312 |
ras.top = top;
|
|
1313 |
ras.error = Raster_Err_Overflow;
|
|
1314 |
return FAILURE;
|
|
1315 |
}
|
|
1316 |
|
|
1317 |
start_arc = arc;
|
|
1318 |
|
|
1319 |
while ( arc >= start_arc && e <= e2 )
|
|
1320 |
{
|
|
1321 |
ras.joint = FALSE;
|
|
1322 |
|
|
1323 |
y2 = arc[0].y;
|
|
1324 |
|
|
1325 |
if ( y2 > e )
|
|
1326 |
{
|
|
1327 |
y1 = arc[degree].y;
|
|
1328 |
if ( y2 - y1 >= ras.precision_step )
|
|
1329 |
{
|
|
1330 |
splitter( arc );
|
|
1331 |
arc += degree;
|
|
1332 |
}
|
|
1333 |
else
|
|
1334 |
{
|
|
1335 |
*top++ = arc[degree].x + FMulDiv( arc[0].x - arc[degree].x,
|
|
1336 |
e - y1, y2 - y1 );
|
|
1337 |
arc -= degree;
|
|
1338 |
e += ras.precision;
|
|
1339 |
}
|
|
1340 |
}
|
|
1341 |
else
|
|
1342 |
{
|
|
1343 |
if ( y2 == e )
|
|
1344 |
{
|
|
1345 |
ras.joint = TRUE;
|
|
1346 |
*top++ = arc[0].x;
|
|
1347 |
|
|
1348 |
e += ras.precision;
|
|
1349 |
}
|
|
1350 |
arc -= degree;
|
|
1351 |
}
|
|
1352 |
}
|
|
1353 |
|
|
1354 |
Fin:
|
|
1355 |
ras.top = top;
|
|
1356 |
ras.arc -= degree;
|
|
1357 |
return SUCCESS;
|
|
1358 |
}
|
|
1359 |
|
|
1360 |
|
|
1361 |
/*************************************************************************/
|
|
1362 |
/* */
|
|
1363 |
/* <Function> */
|
|
1364 |
/* Bezier_Down */
|
|
1365 |
/* */
|
|
1366 |
/* <Description> */
|
|
1367 |
/* Compute the x-coordinates of an descending Bezier arc and store */
|
|
1368 |
/* them in the render pool. */
|
|
1369 |
/* */
|
|
1370 |
/* <Input> */
|
|
1371 |
/* degree :: The degree of the Bezier arc (either 2 or 3). */
|
|
1372 |
/* */
|
|
1373 |
/* splitter :: The function to split Bezier arcs. */
|
|
1374 |
/* */
|
|
1375 |
/* miny :: A lower vertical clipping bound value. */
|
|
1376 |
/* */
|
|
1377 |
/* maxy :: An upper vertical clipping bound value. */
|
|
1378 |
/* */
|
|
1379 |
/* <Return> */
|
|
1380 |
/* SUCCESS on success, FAILURE on render pool overflow. */
|
|
1381 |
/* */
|
|
1382 |
static Bool
|
|
1383 |
Bezier_Down( RAS_ARGS Int degree,
|
|
1384 |
TSplitter splitter,
|
|
1385 |
Long miny,
|
|
1386 |
Long maxy )
|
|
1387 |
{
|
|
1388 |
TPoint* arc = ras.arc;
|
|
1389 |
Bool result, fresh;
|
|
1390 |
|
|
1391 |
|
|
1392 |
arc[0].y = -arc[0].y;
|
|
1393 |
arc[1].y = -arc[1].y;
|
|
1394 |
arc[2].y = -arc[2].y;
|
|
1395 |
if ( degree > 2 )
|
|
1396 |
arc[3].y = -arc[3].y;
|
|
1397 |
|
|
1398 |
fresh = ras.fresh;
|
|
1399 |
|
|
1400 |
result = Bezier_Up( RAS_VARS degree, splitter, -maxy, -miny );
|
|
1401 |
|
|
1402 |
if ( fresh && !ras.fresh )
|
|
1403 |
ras.cProfile->start = -ras.cProfile->start;
|
|
1404 |
|
|
1405 |
arc[0].y = -arc[0].y;
|
|
1406 |
return result;
|
|
1407 |
}
|
|
1408 |
|
|
1409 |
|
|
1410 |
/*************************************************************************/
|
|
1411 |
/* */
|
|
1412 |
/* <Function> */
|
|
1413 |
/* Line_To */
|
|
1414 |
/* */
|
|
1415 |
/* <Description> */
|
|
1416 |
/* Inject a new line segment and adjust the Profiles list. */
|
|
1417 |
/* */
|
|
1418 |
/* <Input> */
|
|
1419 |
/* x :: The x-coordinate of the segment's end point (its start point */
|
|
1420 |
/* is stored in `lastX'). */
|
|
1421 |
/* */
|
|
1422 |
/* y :: The y-coordinate of the segment's end point (its start point */
|
|
1423 |
/* is stored in `lastY'). */
|
|
1424 |
/* */
|
|
1425 |
/* <Return> */
|
|
1426 |
/* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
|
1427 |
/* profile. */
|
|
1428 |
/* */
|
|
1429 |
static Bool
|
|
1430 |
Line_To( RAS_ARGS Long x,
|
|
1431 |
Long y )
|
|
1432 |
{
|
|
1433 |
/* First, detect a change of direction */
|
|
1434 |
|
|
1435 |
switch ( ras.state )
|
|
1436 |
{
|
|
1437 |
case Unknown_State:
|
|
1438 |
if ( y > ras.lastY )
|
|
1439 |
{
|
|
1440 |
if ( New_Profile( RAS_VARS Ascending_State,
|
|
1441 |
IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
|
|
1442 |
return FAILURE;
|
|
1443 |
}
|
|
1444 |
else
|
|
1445 |
{
|
|
1446 |
if ( y < ras.lastY )
|
|
1447 |
if ( New_Profile( RAS_VARS Descending_State,
|
|
1448 |
IS_TOP_OVERSHOOT( ras.lastY ) ) )
|
|
1449 |
return FAILURE;
|
|
1450 |
}
|
|
1451 |
break;
|
|
1452 |
|
|
1453 |
case Ascending_State:
|
|
1454 |
if ( y < ras.lastY )
|
|
1455 |
{
|
|
1456 |
if ( End_Profile( RAS_VARS IS_TOP_OVERSHOOT( ras.lastY ) ) ||
|
|
1457 |
New_Profile( RAS_VARS Descending_State,
|
|
1458 |
IS_TOP_OVERSHOOT( ras.lastY ) ) )
|
|
1459 |
return FAILURE;
|
|
1460 |
}
|
|
1461 |
break;
|
|
1462 |
|
|
1463 |
case Descending_State:
|
|
1464 |
if ( y > ras.lastY )
|
|
1465 |
{
|
|
1466 |
if ( End_Profile( RAS_VARS IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ||
|
|
1467 |
New_Profile( RAS_VARS Ascending_State,
|
|
1468 |
IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
|
|
1469 |
return FAILURE;
|
|
1470 |
}
|
|
1471 |
break;
|
|
1472 |
|
|
1473 |
default:
|
|
1474 |
;
|
|
1475 |
}
|
|
1476 |
|
|
1477 |
/* Then compute the lines */
|
|
1478 |
|
|
1479 |
switch ( ras.state )
|
|
1480 |
{
|
|
1481 |
case Ascending_State:
|
|
1482 |
if ( Line_Up( RAS_VARS ras.lastX, ras.lastY,
|
|
1483 |
x, y, ras.minY, ras.maxY ) )
|
|
1484 |
return FAILURE;
|
|
1485 |
break;
|
|
1486 |
|
|
1487 |
case Descending_State:
|
|
1488 |
if ( Line_Down( RAS_VARS ras.lastX, ras.lastY,
|
|
1489 |
x, y, ras.minY, ras.maxY ) )
|
|
1490 |
return FAILURE;
|
|
1491 |
break;
|
|
1492 |
|
|
1493 |
default:
|
|
1494 |
;
|
|
1495 |
}
|
|
1496 |
|
|
1497 |
ras.lastX = x;
|
|
1498 |
ras.lastY = y;
|
|
1499 |
|
|
1500 |
return SUCCESS;
|
|
1501 |
}
|
|
1502 |
|
|
1503 |
|
|
1504 |
/*************************************************************************/
|
|
1505 |
/* */
|
|
1506 |
/* <Function> */
|
|
1507 |
/* Conic_To */
|
|
1508 |
/* */
|
|
1509 |
/* <Description> */
|
|
1510 |
/* Inject a new conic arc and adjust the profile list. */
|
|
1511 |
/* */
|
|
1512 |
/* <Input> */
|
|
1513 |
/* cx :: The x-coordinate of the arc's new control point. */
|
|
1514 |
/* */
|
|
1515 |
/* cy :: The y-coordinate of the arc's new control point. */
|
|
1516 |
/* */
|
|
1517 |
/* x :: The x-coordinate of the arc's end point (its start point is */
|
|
1518 |
/* stored in `lastX'). */
|
|
1519 |
/* */
|
|
1520 |
/* y :: The y-coordinate of the arc's end point (its start point is */
|
|
1521 |
/* stored in `lastY'). */
|
|
1522 |
/* */
|
|
1523 |
/* <Return> */
|
|
1524 |
/* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
|
1525 |
/* profile. */
|
|
1526 |
/* */
|
|
1527 |
static Bool
|
|
1528 |
Conic_To( RAS_ARGS Long cx,
|
|
1529 |
Long cy,
|
|
1530 |
Long x,
|
|
1531 |
Long y )
|
|
1532 |
{
|
|
1533 |
Long y1, y2, y3, x3, ymin, ymax;
|
|
1534 |
TStates state_bez;
|
|
1535 |
|
|
1536 |
|
|
1537 |
ras.arc = ras.arcs;
|
|
1538 |
ras.arc[2].x = ras.lastX;
|
|
1539 |
ras.arc[2].y = ras.lastY;
|
|
1540 |
ras.arc[1].x = cx;
|
|
1541 |
ras.arc[1].y = cy;
|
|
1542 |
ras.arc[0].x = x;
|
|
1543 |
ras.arc[0].y = y;
|
|
1544 |
|
|
1545 |
do
|
|
1546 |
{
|
|
1547 |
y1 = ras.arc[2].y;
|
|
1548 |
y2 = ras.arc[1].y;
|
|
1549 |
y3 = ras.arc[0].y;
|
|
1550 |
x3 = ras.arc[0].x;
|
|
1551 |
|
|
1552 |
/* first, categorize the Bezier arc */
|
|
1553 |
|
|
1554 |
if ( y1 <= y3 )
|
|
1555 |
{
|
|
1556 |
ymin = y1;
|
|
1557 |
ymax = y3;
|
|
1558 |
}
|
|
1559 |
else
|
|
1560 |
{
|
|
1561 |
ymin = y3;
|
|
1562 |
ymax = y1;
|
|
1563 |
}
|
|
1564 |
|
|
1565 |
if ( y2 < ymin || y2 > ymax )
|
|
1566 |
{
|
|
1567 |
/* this arc has no given direction, split it! */
|
|
1568 |
Split_Conic( ras.arc );
|
|
1569 |
ras.arc += 2;
|
|
1570 |
}
|
|
1571 |
else if ( y1 == y3 )
|
|
1572 |
{
|
|
1573 |
/* this arc is flat, ignore it and pop it from the Bezier stack */
|
|
1574 |
ras.arc -= 2;
|
|
1575 |
}
|
|
1576 |
else
|
|
1577 |
{
|
|
1578 |
/* the arc is y-monotonous, either ascending or descending */
|
|
1579 |
/* detect a change of direction */
|
|
1580 |
state_bez = y1 < y3 ? Ascending_State : Descending_State;
|
|
1581 |
if ( ras.state != state_bez )
|
|
1582 |
{
|
|
1583 |
Bool o = state_bez == Ascending_State ? IS_BOTTOM_OVERSHOOT( y1 )
|
|
1584 |
: IS_TOP_OVERSHOOT( y1 );
|
|
1585 |
|
|
1586 |
|
|
1587 |
/* finalize current profile if any */
|
|
1588 |
if ( ras.state != Unknown_State &&
|
|
1589 |
End_Profile( RAS_VARS o ) )
|
|
1590 |
goto Fail;
|
|
1591 |
|
|
1592 |
/* create a new profile */
|
|
1593 |
if ( New_Profile( RAS_VARS state_bez, o ) )
|
|
1594 |
goto Fail;
|
|
1595 |
}
|
|
1596 |
|
|
1597 |
/* now call the appropriate routine */
|
|
1598 |
if ( state_bez == Ascending_State )
|
|
1599 |
{
|
|
1600 |
if ( Bezier_Up( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
|
|
1601 |
goto Fail;
|
|
1602 |
}
|
|
1603 |
else
|
|
1604 |
if ( Bezier_Down( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
|
|
1605 |
goto Fail;
|
|
1606 |
}
|
|
1607 |
|
|
1608 |
} while ( ras.arc >= ras.arcs );
|
|
1609 |
|
|
1610 |
ras.lastX = x3;
|
|
1611 |
ras.lastY = y3;
|
|
1612 |
|
|
1613 |
return SUCCESS;
|
|
1614 |
|
|
1615 |
Fail:
|
|
1616 |
return FAILURE;
|
|
1617 |
}
|
|
1618 |
|
|
1619 |
|
|
1620 |
/*************************************************************************/
|
|
1621 |
/* */
|
|
1622 |
/* <Function> */
|
|
1623 |
/* Cubic_To */
|
|
1624 |
/* */
|
|
1625 |
/* <Description> */
|
|
1626 |
/* Inject a new cubic arc and adjust the profile list. */
|
|
1627 |
/* */
|
|
1628 |
/* <Input> */
|
|
1629 |
/* cx1 :: The x-coordinate of the arc's first new control point. */
|
|
1630 |
/* */
|
|
1631 |
/* cy1 :: The y-coordinate of the arc's first new control point. */
|
|
1632 |
/* */
|
|
1633 |
/* cx2 :: The x-coordinate of the arc's second new control point. */
|
|
1634 |
/* */
|
|
1635 |
/* cy2 :: The y-coordinate of the arc's second new control point. */
|
|
1636 |
/* */
|
|
1637 |
/* x :: The x-coordinate of the arc's end point (its start point is */
|
|
1638 |
/* stored in `lastX'). */
|
|
1639 |
/* */
|
|
1640 |
/* y :: The y-coordinate of the arc's end point (its start point is */
|
|
1641 |
/* stored in `lastY'). */
|
|
1642 |
/* */
|
|
1643 |
/* <Return> */
|
|
1644 |
/* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
|
1645 |
/* profile. */
|
|
1646 |
/* */
|
|
1647 |
static Bool
|
|
1648 |
Cubic_To( RAS_ARGS Long cx1,
|
|
1649 |
Long cy1,
|
|
1650 |
Long cx2,
|
|
1651 |
Long cy2,
|
|
1652 |
Long x,
|
|
1653 |
Long y )
|
|
1654 |
{
|
|
1655 |
Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2;
|
|
1656 |
TStates state_bez;
|
|
1657 |
|
|
1658 |
|
|
1659 |
ras.arc = ras.arcs;
|
|
1660 |
ras.arc[3].x = ras.lastX;
|
|
1661 |
ras.arc[3].y = ras.lastY;
|
|
1662 |
ras.arc[2].x = cx1;
|
|
1663 |
ras.arc[2].y = cy1;
|
|
1664 |
ras.arc[1].x = cx2;
|
|
1665 |
ras.arc[1].y = cy2;
|
|
1666 |
ras.arc[0].x = x;
|
|
1667 |
ras.arc[0].y = y;
|
|
1668 |
|
|
1669 |
do
|
|
1670 |
{
|
|
1671 |
y1 = ras.arc[3].y;
|
|
1672 |
y2 = ras.arc[2].y;
|
|
1673 |
y3 = ras.arc[1].y;
|
|
1674 |
y4 = ras.arc[0].y;
|
|
1675 |
x4 = ras.arc[0].x;
|
|
1676 |
|
|
1677 |
/* first, categorize the Bezier arc */
|
|
1678 |
|
|
1679 |
if ( y1 <= y4 )
|
|
1680 |
{
|
|
1681 |
ymin1 = y1;
|
|
1682 |
ymax1 = y4;
|
|
1683 |
}
|
|
1684 |
else
|
|
1685 |
{
|
|
1686 |
ymin1 = y4;
|
|
1687 |
ymax1 = y1;
|
|
1688 |
}
|
|
1689 |
|
|
1690 |
if ( y2 <= y3 )
|
|
1691 |
{
|
|
1692 |
ymin2 = y2;
|
|
1693 |
ymax2 = y3;
|
|
1694 |
}
|
|
1695 |
else
|
|
1696 |
{
|
|
1697 |
ymin2 = y3;
|
|
1698 |
ymax2 = y2;
|
|
1699 |
}
|
|
1700 |
|
|
1701 |
if ( ymin2 < ymin1 || ymax2 > ymax1 )
|
|
1702 |
{
|
|
1703 |
/* this arc has no given direction, split it! */
|
|
1704 |
Split_Cubic( ras.arc );
|
|
1705 |
ras.arc += 3;
|
|
1706 |
}
|
|
1707 |
else if ( y1 == y4 )
|
|
1708 |
{
|
|
1709 |
/* this arc is flat, ignore it and pop it from the Bezier stack */
|
|
1710 |
ras.arc -= 3;
|
|
1711 |
}
|
|
1712 |
else
|
|
1713 |
{
|
|
1714 |
state_bez = ( y1 <= y4 ) ? Ascending_State : Descending_State;
|
|
1715 |
|
|
1716 |
/* detect a change of direction */
|
|
1717 |
if ( ras.state != state_bez )
|
|
1718 |
{
|
|
1719 |
Bool o = state_bez == Ascending_State ? IS_BOTTOM_OVERSHOOT( y1 )
|
|
1720 |
: IS_TOP_OVERSHOOT( y1 );
|
|
1721 |
|
|
1722 |
|
|
1723 |
/* finalize current profile if any */
|
|
1724 |
if ( ras.state != Unknown_State &&
|
|
1725 |
End_Profile( RAS_VARS o ) )
|
|
1726 |
goto Fail;
|
|
1727 |
|
|
1728 |
if ( New_Profile( RAS_VARS state_bez, o ) )
|
|
1729 |
goto Fail;
|
|
1730 |
}
|
|
1731 |
|
|
1732 |
/* compute intersections */
|
|
1733 |
if ( state_bez == Ascending_State )
|
|
1734 |
{
|
|
1735 |
if ( Bezier_Up( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
|
|
1736 |
goto Fail;
|
|
1737 |
}
|
|
1738 |
else
|
|
1739 |
if ( Bezier_Down( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
|
|
1740 |
goto Fail;
|
|
1741 |
}
|
|
1742 |
|
|
1743 |
} while ( ras.arc >= ras.arcs );
|
|
1744 |
|
|
1745 |
ras.lastX = x4;
|
|
1746 |
ras.lastY = y4;
|
|
1747 |
|
|
1748 |
return SUCCESS;
|
|
1749 |
|
|
1750 |
Fail:
|
|
1751 |
return FAILURE;
|
|
1752 |
}
|
|
1753 |
|
|
1754 |
|
|
1755 |
#undef SWAP_
|
|
1756 |
#define SWAP_( x, y ) do \
|
|
1757 |
{ \
|
|
1758 |
Long swap = x; \
|
|
1759 |
\
|
|
1760 |
\
|
|
1761 |
x = y; \
|
|
1762 |
y = swap; \
|
|
1763 |
} while ( 0 )
|
|
1764 |
|
|
1765 |
|
|
1766 |
/*************************************************************************/
|
|
1767 |
/* */
|
|
1768 |
/* <Function> */
|
|
1769 |
/* Decompose_Curve */
|
|
1770 |
/* */
|
|
1771 |
/* <Description> */
|
|
1772 |
/* Scan the outline arrays in order to emit individual segments and */
|
|
1773 |
/* Beziers by calling Line_To() and Bezier_To(). It handles all */
|
|
1774 |
/* weird cases, like when the first point is off the curve, or when */
|
|
1775 |
/* there are simply no `on' points in the contour! */
|
|
1776 |
/* */
|
|
1777 |
/* <Input> */
|
|
1778 |
/* first :: The index of the first point in the contour. */
|
|
1779 |
/* */
|
|
1780 |
/* last :: The index of the last point in the contour. */
|
|
1781 |
/* */
|
|
1782 |
/* flipped :: If set, flip the direction of the curve. */
|
|
1783 |
/* */
|
|
1784 |
/* <Return> */
|
|
1785 |
/* SUCCESS on success, FAILURE on error. */
|
|
1786 |
/* */
|
|
1787 |
static Bool
|
|
1788 |
Decompose_Curve( RAS_ARGS UShort first,
|
|
1789 |
UShort last,
|
|
1790 |
int flipped )
|
|
1791 |
{
|
|
1792 |
FT_Vector v_last;
|
|
1793 |
FT_Vector v_control;
|
|
1794 |
FT_Vector v_start;
|
|
1795 |
|
|
1796 |
FT_Vector* points;
|
|
1797 |
FT_Vector* point;
|
|
1798 |
FT_Vector* limit;
|
|
1799 |
char* tags;
|
|
1800 |
|
|
1801 |
unsigned tag; /* current point's state */
|
|
1802 |
|
|
1803 |
|
|
1804 |
points = ras.outline.points;
|
|
1805 |
limit = points + last;
|
|
1806 |
|
|
1807 |
v_start.x = SCALED( points[first].x );
|
|
1808 |
v_start.y = SCALED( points[first].y );
|
|
1809 |
v_last.x = SCALED( points[last].x );
|
|
1810 |
v_last.y = SCALED( points[last].y );
|
|
1811 |
|
|
1812 |
if ( flipped )
|
|
1813 |
{
|
|
1814 |
SWAP_( v_start.x, v_start.y );
|
|
1815 |
SWAP_( v_last.x, v_last.y );
|
|
1816 |
}
|
|
1817 |
|
|
1818 |
v_control = v_start;
|
|
1819 |
|
|
1820 |
point = points + first;
|
|
1821 |
tags = ras.outline.tags + first;
|
|
1822 |
|
|
1823 |
/* set scan mode if necessary */
|
|
1824 |
if ( tags[0] & FT_CURVE_TAG_HAS_SCANMODE )
|
|
1825 |
ras.dropOutControl = (Byte)tags[0] >> 5;
|
|
1826 |
|
|
1827 |
tag = FT_CURVE_TAG( tags[0] );
|
|
1828 |
|
|
1829 |
/* A contour cannot start with a cubic control point! */
|
|
1830 |
if ( tag == FT_CURVE_TAG_CUBIC )
|
|
1831 |
goto Invalid_Outline;
|
|
1832 |
|
|
1833 |
/* check first point to determine origin */
|
|
1834 |
if ( tag == FT_CURVE_TAG_CONIC )
|
|
1835 |
{
|
|
1836 |
/* first point is conic control. Yes, this happens. */
|
|
1837 |
if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_CURVE_TAG_ON )
|
|
1838 |
{
|
|
1839 |
/* start at last point if it is on the curve */
|
|
1840 |
v_start = v_last;
|
|
1841 |
limit--;
|
|
1842 |
}
|
|
1843 |
else
|
|
1844 |
{
|
|
1845 |
/* if both first and last points are conic, */
|
|
1846 |
/* start at their middle and record its position */
|
|
1847 |
/* for closure */
|
|
1848 |
v_start.x = ( v_start.x + v_last.x ) / 2;
|
|
1849 |
v_start.y = ( v_start.y + v_last.y ) / 2;
|
|
1850 |
|
|
1851 |
v_last = v_start;
|
|
1852 |
}
|
|
1853 |
point--;
|
|
1854 |
tags--;
|
|
1855 |
}
|
|
1856 |
|
|
1857 |
ras.lastX = v_start.x;
|
|
1858 |
ras.lastY = v_start.y;
|
|
1859 |
|
|
1860 |
while ( point < limit )
|
|
1861 |
{
|
|
1862 |
point++;
|
|
1863 |
tags++;
|
|
1864 |
|
|
1865 |
tag = FT_CURVE_TAG( tags[0] );
|
|
1866 |
|
|
1867 |
switch ( tag )
|
|
1868 |
{
|
|
1869 |
case FT_CURVE_TAG_ON: /* emit a single line_to */
|
|
1870 |
{
|
|
1871 |
Long x, y;
|
|
1872 |
|
|
1873 |
|
|
1874 |
x = SCALED( point->x );
|
|
1875 |
y = SCALED( point->y );
|
|
1876 |
if ( flipped )
|
|
1877 |
SWAP_( x, y );
|
|
1878 |
|
|
1879 |
if ( Line_To( RAS_VARS x, y ) )
|
|
1880 |
goto Fail;
|
|
1881 |
continue;
|
|
1882 |
}
|
|
1883 |
|
|
1884 |
case FT_CURVE_TAG_CONIC: /* consume conic arcs */
|
|
1885 |
v_control.x = SCALED( point[0].x );
|
|
1886 |
v_control.y = SCALED( point[0].y );
|
|
1887 |
|
|
1888 |
if ( flipped )
|
|
1889 |
SWAP_( v_control.x, v_control.y );
|
|
1890 |
|
|
1891 |
Do_Conic:
|
|
1892 |
if ( point < limit )
|
|
1893 |
{
|
|
1894 |
FT_Vector v_middle;
|
|
1895 |
Long x, y;
|
|
1896 |
|
|
1897 |
|
|
1898 |
point++;
|
|
1899 |
tags++;
|
|
1900 |
tag = FT_CURVE_TAG( tags[0] );
|
|
1901 |
|
|
1902 |
x = SCALED( point[0].x );
|
|
1903 |
y = SCALED( point[0].y );
|
|
1904 |
|
|
1905 |
if ( flipped )
|
|
1906 |
SWAP_( x, y );
|
|
1907 |
|
|
1908 |
if ( tag == FT_CURVE_TAG_ON )
|
|
1909 |
{
|
|
1910 |
if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) )
|
|
1911 |
goto Fail;
|
|
1912 |
continue;
|
|
1913 |
}
|
|
1914 |
|
|
1915 |
if ( tag != FT_CURVE_TAG_CONIC )
|
|
1916 |
goto Invalid_Outline;
|
|
1917 |
|
|
1918 |
v_middle.x = ( v_control.x + x ) / 2;
|
|
1919 |
v_middle.y = ( v_control.y + y ) / 2;
|
|
1920 |
|
|
1921 |
if ( Conic_To( RAS_VARS v_control.x, v_control.y,
|
|
1922 |
v_middle.x, v_middle.y ) )
|
|
1923 |
goto Fail;
|
|
1924 |
|
|
1925 |
v_control.x = x;
|
|
1926 |
v_control.y = y;
|
|
1927 |
|
|
1928 |
goto Do_Conic;
|
|
1929 |
}
|
|
1930 |
|
|
1931 |
if ( Conic_To( RAS_VARS v_control.x, v_control.y,
|
|
1932 |
v_start.x, v_start.y ) )
|
|
1933 |
goto Fail;
|
|
1934 |
|
|
1935 |
goto Close;
|
|
1936 |
|
|
1937 |
default: /* FT_CURVE_TAG_CUBIC */
|
|
1938 |
{
|
|
1939 |
Long x1, y1, x2, y2, x3, y3;
|
|
1940 |
|
|
1941 |
|
|
1942 |
if ( point + 1 > limit ||
|
|
1943 |
FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
|
|
1944 |
goto Invalid_Outline;
|
|
1945 |
|
|
1946 |
point += 2;
|
|
1947 |
tags += 2;
|
|
1948 |
|
|
1949 |
x1 = SCALED( point[-2].x );
|
|
1950 |
y1 = SCALED( point[-2].y );
|
|
1951 |
x2 = SCALED( point[-1].x );
|
|
1952 |
y2 = SCALED( point[-1].y );
|
|
1953 |
|
|
1954 |
if ( flipped )
|
|
1955 |
{
|
|
1956 |
SWAP_( x1, y1 );
|
|
1957 |
SWAP_( x2, y2 );
|
|
1958 |
}
|
|
1959 |
|
|
1960 |
if ( point <= limit )
|
|
1961 |
{
|
|
1962 |
x3 = SCALED( point[0].x );
|
|
1963 |
y3 = SCALED( point[0].y );
|
|
1964 |
|
|
1965 |
if ( flipped )
|
|
1966 |
SWAP_( x3, y3 );
|
|
1967 |
|
|
1968 |
if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) )
|
|
1969 |
goto Fail;
|
|
1970 |
continue;
|
|
1971 |
}
|
|
1972 |
|
|
1973 |
if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) )
|
|
1974 |
goto Fail;
|
|
1975 |
goto Close;
|
|
1976 |
}
|
|
1977 |
}
|
|
1978 |
}
|
|
1979 |
|
|
1980 |
/* close the contour with a line segment */
|
|
1981 |
if ( Line_To( RAS_VARS v_start.x, v_start.y ) )
|
|
1982 |
goto Fail;
|
|
1983 |
|
|
1984 |
Close:
|
|
1985 |
return SUCCESS;
|
|
1986 |
|
|
1987 |
Invalid_Outline:
|
|
1988 |
ras.error = Raster_Err_Invalid;
|
|
1989 |
|
|
1990 |
Fail:
|
|
1991 |
return FAILURE;
|
|
1992 |
}
|
|
1993 |
|
|
1994 |
|
|
1995 |
/*************************************************************************/
|
|
1996 |
/* */
|
|
1997 |
/* <Function> */
|
|
1998 |
/* Convert_Glyph */
|
|
1999 |
/* */
|
|
2000 |
/* <Description> */
|
|
2001 |
/* Convert a glyph into a series of segments and arcs and make a */
|
|
2002 |
/* profiles list with them. */
|
|
2003 |
/* */
|
|
2004 |
/* <Input> */
|
|
2005 |
/* flipped :: If set, flip the direction of curve. */
|
|
2006 |
/* */
|
|
2007 |
/* <Return> */
|
|
2008 |
/* SUCCESS on success, FAILURE if any error was encountered during */
|
|
2009 |
/* rendering. */
|
|
2010 |
/* */
|
|
2011 |
static Bool
|
|
2012 |
Convert_Glyph( RAS_ARGS int flipped )
|
|
2013 |
{
|
|
2014 |
int i;
|
|
2015 |
unsigned start;
|
|
2016 |
|
|
2017 |
PProfile lastProfile;
|
|
2018 |
|
|
2019 |
|
|
2020 |
ras.fProfile = NULL;
|
|
2021 |
ras.joint = FALSE;
|
|
2022 |
ras.fresh = FALSE;
|
|
2023 |
|
|
2024 |
ras.maxBuff = ras.sizeBuff - AlignProfileSize;
|
|
2025 |
|
|
2026 |
ras.numTurns = 0;
|
|
2027 |
|
|
2028 |
ras.cProfile = (PProfile)ras.top;
|
|
2029 |
ras.cProfile->offset = ras.top;
|
|
2030 |
ras.num_Profs = 0;
|
|
2031 |
|
|
2032 |
start = 0;
|
|
2033 |
|
|
2034 |
for ( i = 0; i < ras.outline.n_contours; i++ )
|
|
2035 |
{
|
|
2036 |
Bool o;
|
|
2037 |
|
|
2038 |
|
|
2039 |
ras.state = Unknown_State;
|
|
2040 |
ras.gProfile = NULL;
|
|
2041 |
|
|
2042 |
if ( Decompose_Curve( RAS_VARS (unsigned short)start,
|
|
2043 |
ras.outline.contours[i],
|
|
2044 |
flipped ) )
|
|
2045 |
return FAILURE;
|
|
2046 |
|
|
2047 |
start = ras.outline.contours[i] + 1;
|
|
2048 |
|
|
2049 |
/* we must now check whether the extreme arcs join or not */
|
|
2050 |
if ( FRAC( ras.lastY ) == 0 &&
|
|
2051 |
ras.lastY >= ras.minY &&
|
|
2052 |
ras.lastY <= ras.maxY )
|
|
2053 |
if ( ras.gProfile &&
|
|
2054 |
( ras.gProfile->flags & Flow_Up ) ==
|
|
2055 |
( ras.cProfile->flags & Flow_Up ) )
|
|
2056 |
ras.top--;
|
|
2057 |
/* Note that ras.gProfile can be nil if the contour was too small */
|
|
2058 |
/* to be drawn. */
|
|
2059 |
|
|
2060 |
lastProfile = ras.cProfile;
|
|
2061 |
if ( ras.cProfile->flags & Flow_Up )
|
|
2062 |
o = IS_TOP_OVERSHOOT( ras.lastY );
|
|
2063 |
else
|
|
2064 |
o = IS_BOTTOM_OVERSHOOT( ras.lastY );
|
|
2065 |
if ( End_Profile( RAS_VARS o ) )
|
|
2066 |
return FAILURE;
|
|
2067 |
|
|
2068 |
/* close the `next profile in contour' linked list */
|
|
2069 |
if ( ras.gProfile )
|
|
2070 |
lastProfile->next = ras.gProfile;
|
|
2071 |
}
|
|
2072 |
|
|
2073 |
if ( Finalize_Profile_Table( RAS_VAR ) )
|
|
2074 |
return FAILURE;
|
|
2075 |
|
|
2076 |
return (Bool)( ras.top < ras.maxBuff ? SUCCESS : FAILURE );
|
|
2077 |
}
|
|
2078 |
|
|
2079 |
|
|
2080 |
/*************************************************************************/
|
|
2081 |
/*************************************************************************/
|
|
2082 |
/** **/
|
|
2083 |
/** SCAN-LINE SWEEPS AND DRAWING **/
|
|
2084 |
/** **/
|
|
2085 |
/*************************************************************************/
|
|
2086 |
/*************************************************************************/
|
|
2087 |
|
|
2088 |
|
|
2089 |
/*************************************************************************/
|
|
2090 |
/* */
|
|
2091 |
/* Init_Linked */
|
|
2092 |
/* */
|
|
2093 |
/* Initializes an empty linked list. */
|
|
2094 |
/* */
|
|
2095 |
static void
|
|
2096 |
Init_Linked( TProfileList* l )
|
|
2097 |
{
|
|
2098 |
*l = NULL;
|
|
2099 |
}
|
|
2100 |
|
|
2101 |
|
|
2102 |
/*************************************************************************/
|
|
2103 |
/* */
|
|
2104 |
/* InsNew */
|
|
2105 |
/* */
|
|
2106 |
/* Inserts a new profile in a linked list. */
|
|
2107 |
/* */
|
|
2108 |
static void
|
|
2109 |
InsNew( PProfileList list,
|
|
2110 |
PProfile profile )
|
|
2111 |
{
|
|
2112 |
PProfile *old, current;
|
|
2113 |
Long x;
|
|
2114 |
|
|
2115 |
|
|
2116 |
old = list;
|
|
2117 |
current = *old;
|
|
2118 |
x = profile->X;
|
|
2119 |
|
|
2120 |
while ( current )
|
|
2121 |
{
|
|
2122 |
if ( x < current->X )
|
|
2123 |
break;
|
|
2124 |
old = ¤t->link;
|
|
2125 |
current = *old;
|
|
2126 |
}
|
|
2127 |
|
|
2128 |
profile->link = current;
|
|
2129 |
*old = profile;
|
|
2130 |
}
|
|
2131 |
|
|
2132 |
|
|
2133 |
/*************************************************************************/
|
|
2134 |
/* */
|
|
2135 |
/* DelOld */
|
|
2136 |
/* */
|
|
2137 |
/* Removes an old profile from a linked list. */
|
|
2138 |
/* */
|
|
2139 |
static void
|
|
2140 |
DelOld( PProfileList list,
|
|
2141 |
PProfile profile )
|
|
2142 |
{
|
|
2143 |
PProfile *old, current;
|
|
2144 |
|
|
2145 |
|
|
2146 |
old = list;
|
|
2147 |
current = *old;
|
|
2148 |
|
|
2149 |
while ( current )
|
|
2150 |
{
|
|
2151 |
if ( current == profile )
|
|
2152 |
{
|
|
2153 |
*old = current->link;
|
|
2154 |
return;
|
|
2155 |
}
|
|
2156 |
|
|
2157 |
old = ¤t->link;
|
|
2158 |
current = *old;
|
|
2159 |
}
|
|
2160 |
|
|
2161 |
/* we should never get there, unless the profile was not part of */
|
|
2162 |
/* the list. */
|
|
2163 |
}
|
|
2164 |
|
|
2165 |
|
|
2166 |
/*************************************************************************/
|
|
2167 |
/* */
|
|
2168 |
/* Sort */
|
|
2169 |
/* */
|
|
2170 |
/* Sorts a trace list. In 95%, the list is already sorted. We need */
|
|
2171 |
/* an algorithm which is fast in this case. Bubble sort is enough */
|
|
2172 |
/* and simple. */
|
|
2173 |
/* */
|
|
2174 |
static void
|
|
2175 |
Sort( PProfileList list )
|
|
2176 |
{
|
|
2177 |
PProfile *old, current, next;
|
|
2178 |
|
|
2179 |
|
|
2180 |
/* First, set the new X coordinate of each profile */
|
|
2181 |
current = *list;
|
|
2182 |
while ( current )
|
|
2183 |
{
|
|
2184 |
current->X = *current->offset;
|
|
2185 |
current->offset += current->flags & Flow_Up ? 1 : -1;
|
|
2186 |
current->height--;
|
|
2187 |
current = current->link;
|
|
2188 |
}
|
|
2189 |
|
|
2190 |
/* Then sort them */
|
|
2191 |
old = list;
|
|
2192 |
current = *old;
|
|
2193 |
|
|
2194 |
if ( !current )
|
|
2195 |
return;
|
|
2196 |
|
|
2197 |
next = current->link;
|
|
2198 |
|
|
2199 |
while ( next )
|
|
2200 |
{
|
|
2201 |
if ( current->X <= next->X )
|
|
2202 |
{
|
|
2203 |
old = ¤t->link;
|
|
2204 |
current = *old;
|
|
2205 |
|
|
2206 |
if ( !current )
|
|
2207 |
return;
|
|
2208 |
}
|
|
2209 |
else
|
|
2210 |
{
|
|
2211 |
*old = next;
|
|
2212 |
current->link = next->link;
|
|
2213 |
next->link = current;
|
|
2214 |
|
|
2215 |
old = list;
|
|
2216 |
current = *old;
|
|
2217 |
}
|
|
2218 |
|
|
2219 |
next = current->link;
|
|
2220 |
}
|
|
2221 |
}
|
|
2222 |
|
|
2223 |
|
|
2224 |
/*************************************************************************/
|
|
2225 |
/* */
|
|
2226 |
/* Vertical Sweep Procedure Set */
|
|
2227 |
/* */
|
|
2228 |
/* These four routines are used during the vertical black/white sweep */
|
|
2229 |
/* phase by the generic Draw_Sweep() function. */
|
|
2230 |
/* */
|
|
2231 |
/*************************************************************************/
|
|
2232 |
|
|
2233 |
static void
|
|
2234 |
Vertical_Sweep_Init( RAS_ARGS Short* min,
|
|
2235 |
Short* max )
|
|
2236 |
{
|
|
2237 |
Long pitch = ras.target.pitch;
|
|
2238 |
|
|
2239 |
FT_UNUSED( max );
|
|
2240 |
|
|
2241 |
|
|
2242 |
ras.traceIncr = (Short)-pitch;
|
|
2243 |
ras.traceOfs = -*min * pitch;
|
|
2244 |
if ( pitch > 0 )
|
|
2245 |
ras.traceOfs += ( ras.target.rows - 1 ) * pitch;
|
|
2246 |
|
|
2247 |
ras.gray_min_x = 0;
|
|
2248 |
ras.gray_max_x = 0;
|
|
2249 |
}
|
|
2250 |
|
|
2251 |
|
|
2252 |
static void
|
|
2253 |
Vertical_Sweep_Span( RAS_ARGS Short y,
|
|
2254 |
FT_F26Dot6 x1,
|
|
2255 |
FT_F26Dot6 x2,
|
|
2256 |
PProfile left,
|
|
2257 |
PProfile right )
|
|
2258 |
{
|
|
2259 |
Long e1, e2;
|
|
2260 |
int c1, c2;
|
|
2261 |
Byte f1, f2;
|
|
2262 |
Byte* target;
|
|
2263 |
|
|
2264 |
FT_UNUSED( y );
|
|
2265 |
FT_UNUSED( left );
|
|
2266 |
FT_UNUSED( right );
|
|
2267 |
|
|
2268 |
|
|
2269 |
/* Drop-out control */
|
|
2270 |
|
|
2271 |
e1 = TRUNC( CEILING( x1 ) );
|
|
2272 |
|
|
2273 |
if ( x2 - x1 - ras.precision <= ras.precision_jitter )
|
|
2274 |
e2 = e1;
|
|
2275 |
else
|
|
2276 |
e2 = TRUNC( FLOOR( x2 ) );
|
|
2277 |
|
|
2278 |
if ( e2 >= 0 && e1 < ras.bWidth )
|
|
2279 |
{
|
|
2280 |
if ( e1 < 0 )
|
|
2281 |
e1 = 0;
|
|
2282 |
if ( e2 >= ras.bWidth )
|
|
2283 |
e2 = ras.bWidth - 1;
|
|
2284 |
|
|
2285 |
c1 = (Short)( e1 >> 3 );
|
|
2286 |
c2 = (Short)( e2 >> 3 );
|
|
2287 |
|
|
2288 |
f1 = (Byte) ( 0xFF >> ( e1 & 7 ) );
|
|
2289 |
f2 = (Byte) ~( 0x7F >> ( e2 & 7 ) );
|
|
2290 |
|
|
2291 |
if ( ras.gray_min_x > c1 )
|
|
2292 |
ras.gray_min_x = (short)c1;
|
|
2293 |
if ( ras.gray_max_x < c2 )
|
|
2294 |
ras.gray_max_x = (short)c2;
|
|
2295 |
|
|
2296 |
target = ras.bTarget + ras.traceOfs + c1;
|
|
2297 |
c2 -= c1;
|
|
2298 |
|
|
2299 |
if ( c2 > 0 )
|
|
2300 |
{
|
|
2301 |
target[0] |= f1;
|
|
2302 |
|
|
2303 |
/* memset() is slower than the following code on many platforms. */
|
|
2304 |
/* This is due to the fact that, in the vast majority of cases, */
|
|
2305 |
/* the span length in bytes is relatively small. */
|
|
2306 |
c2--;
|
|
2307 |
while ( c2 > 0 )
|
|
2308 |
{
|
|
2309 |
*(++target) = 0xFF;
|
|
2310 |
c2--;
|
|
2311 |
}
|
|
2312 |
target[1] |= f2;
|
|
2313 |
}
|
|
2314 |
else
|
|
2315 |
*target |= ( f1 & f2 );
|
|
2316 |
}
|
|
2317 |
}
|
|
2318 |
|
|
2319 |
|
|
2320 |
static void
|
|
2321 |
Vertical_Sweep_Drop( RAS_ARGS Short y,
|
|
2322 |
FT_F26Dot6 x1,
|
|
2323 |
FT_F26Dot6 x2,
|
|
2324 |
PProfile left,
|
|
2325 |
PProfile right )
|
|
2326 |
{
|
|
2327 |
Long e1, e2, pxl;
|
|
2328 |
Short c1, f1;
|
|
2329 |
|
|
2330 |
|
|
2331 |
/* Drop-out control */
|
|
2332 |
|
|
2333 |
/* e2 x2 x1 e1 */
|
|
2334 |
/* */
|
|
2335 |
/* ^ | */
|
|
2336 |
/* | | */
|
|
2337 |
/* +-------------+---------------------+------------+ */
|
|
2338 |
/* | | */
|
|
2339 |
/* | v */
|
|
2340 |
/* */
|
|
2341 |
/* pixel contour contour pixel */
|
|
2342 |
/* center center */
|
|
2343 |
|
|
2344 |
/* drop-out mode scan conversion rules (as defined in OpenType) */
|
|
2345 |
/* --------------------------------------------------------------- */
|
|
2346 |
/* 0 1, 2, 3 */
|
|
2347 |
/* 1 1, 2, 4 */
|
|
2348 |
/* 2 1, 2 */
|
|
2349 |
/* 3 same as mode 2 */
|
|
2350 |
/* 4 1, 2, 5 */
|
|
2351 |
/* 5 1, 2, 6 */
|
|
2352 |
/* 6, 7 same as mode 2 */
|
|
2353 |
|
|
2354 |
e1 = CEILING( x1 );
|
|
2355 |
e2 = FLOOR ( x2 );
|
|
2356 |
pxl = e1;
|
|
2357 |
|
|
2358 |
if ( e1 > e2 )
|
|
2359 |
{
|
|
2360 |
Int dropOutControl = left->flags & 7;
|
|
2361 |
|
|
2362 |
|
|
2363 |
if ( e1 == e2 + ras.precision )
|
|
2364 |
{
|
|
2365 |
switch ( dropOutControl )
|
|
2366 |
{
|
|
2367 |
case 0: /* simple drop-outs including stubs */
|
|
2368 |
pxl = e2;
|
|
2369 |
break;
|
|
2370 |
|
|
2371 |
case 4: /* smart drop-outs including stubs */
|
|
2372 |
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
2373 |
break;
|
|
2374 |
|
|
2375 |
case 1: /* simple drop-outs excluding stubs */
|
|
2376 |
case 5: /* smart drop-outs excluding stubs */
|
|
2377 |
|
|
2378 |
/* Drop-out Control Rules #4 and #6 */
|
|
2379 |
|
|
2380 |
/* The specification neither provides an exact definition */
|
|
2381 |
/* of a `stub' nor gives exact rules to exclude them. */
|
|
2382 |
/* */
|
|
2383 |
/* Here the constraints we use to recognize a stub. */
|
|
2384 |
/* */
|
|
2385 |
/* upper stub: */
|
|
2386 |
/* */
|
|
2387 |
/* - P_Left and P_Right are in the same contour */
|
|
2388 |
/* - P_Right is the successor of P_Left in that contour */
|
|
2389 |
/* - y is the top of P_Left and P_Right */
|
|
2390 |
/* */
|
|
2391 |
/* lower stub: */
|
|
2392 |
/* */
|
|
2393 |
/* - P_Left and P_Right are in the same contour */
|
|
2394 |
/* - P_Left is the successor of P_Right in that contour */
|
|
2395 |
/* - y is the bottom of P_Left */
|
|
2396 |
/* */
|
|
2397 |
/* We draw a stub if the following constraints are met. */
|
|
2398 |
/* */
|
|
2399 |
/* - for an upper or lower stub, there is top or bottom */
|
|
2400 |
/* overshoot, respectively */
|
|
2401 |
/* - the covered interval is greater or equal to a half */
|
|
2402 |
/* pixel */
|
|
2403 |
|
|
2404 |
/* upper stub test */
|
|
2405 |
if ( left->next == right &&
|
|
2406 |
left->height <= 0 &&
|
|
2407 |
!( left->flags & Overshoot_Top &&
|
|
2408 |
x2 - x1 >= ras.precision_half ) )
|
|
2409 |
return;
|
|
2410 |
|
|
2411 |
/* lower stub test */
|
|
2412 |
if ( right->next == left &&
|
|
2413 |
left->start == y &&
|
|
2414 |
!( left->flags & Overshoot_Bottom &&
|
|
2415 |
x2 - x1 >= ras.precision_half ) )
|
|
2416 |
return;
|
|
2417 |
|
|
2418 |
if ( dropOutControl == 1 )
|
|
2419 |
pxl = e2;
|
|
2420 |
else
|
|
2421 |
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
2422 |
break;
|
|
2423 |
|
|
2424 |
default: /* modes 2, 3, 6, 7 */
|
|
2425 |
return; /* no drop-out control */
|
|
2426 |
}
|
|
2427 |
|
|
2428 |
/* undocumented but confirmed: If the drop-out would result in a */
|
|
2429 |
/* pixel outside of the bounding box, use the pixel inside of the */
|
|
2430 |
/* bounding box instead */
|
|
2431 |
if ( pxl < 0 )
|
|
2432 |
pxl = e1;
|
|
2433 |
else if ( TRUNC( pxl ) >= ras.bWidth )
|
|
2434 |
pxl = e2;
|
|
2435 |
|
|
2436 |
/* check that the other pixel isn't set */
|
|
2437 |
e1 = pxl == e1 ? e2 : e1;
|
|
2438 |
|
|
2439 |
e1 = TRUNC( e1 );
|
|
2440 |
|
|
2441 |
c1 = (Short)( e1 >> 3 );
|
|
2442 |
f1 = (Short)( e1 & 7 );
|
|
2443 |
|
|
2444 |
if ( e1 >= 0 && e1 < ras.bWidth &&
|
|
2445 |
ras.bTarget[ras.traceOfs + c1] & ( 0x80 >> f1 ) )
|
|
2446 |
return;
|
|
2447 |
}
|
|
2448 |
else
|
|
2449 |
return;
|
|
2450 |
}
|
|
2451 |
|
|
2452 |
e1 = TRUNC( pxl );
|
|
2453 |
|
|
2454 |
if ( e1 >= 0 && e1 < ras.bWidth )
|
|
2455 |
{
|
|
2456 |
c1 = (Short)( e1 >> 3 );
|
|
2457 |
f1 = (Short)( e1 & 7 );
|
|
2458 |
|
|
2459 |
if ( ras.gray_min_x > c1 )
|
|
2460 |
ras.gray_min_x = c1;
|
|
2461 |
if ( ras.gray_max_x < c1 )
|
|
2462 |
ras.gray_max_x = c1;
|
|
2463 |
|
|
2464 |
ras.bTarget[ras.traceOfs + c1] |= (char)( 0x80 >> f1 );
|
|
2465 |
}
|
|
2466 |
}
|
|
2467 |
|
|
2468 |
|
|
2469 |
static void
|
|
2470 |
Vertical_Sweep_Step( RAS_ARG )
|
|
2471 |
{
|
|
2472 |
ras.traceOfs += ras.traceIncr;
|
|
2473 |
}
|
|
2474 |
|
|
2475 |
|
|
2476 |
/***********************************************************************/
|
|
2477 |
/* */
|
|
2478 |
/* Horizontal Sweep Procedure Set */
|
|
2479 |
/* */
|
|
2480 |
/* These four routines are used during the horizontal black/white */
|
|
2481 |
/* sweep phase by the generic Draw_Sweep() function. */
|
|
2482 |
/* */
|
|
2483 |
/***********************************************************************/
|
|
2484 |
|
|
2485 |
static void
|
|
2486 |
Horizontal_Sweep_Init( RAS_ARGS Short* min,
|
|
2487 |
Short* max )
|
|
2488 |
{
|
|
2489 |
/* nothing, really */
|
|
2490 |
FT_UNUSED_RASTER;
|
|
2491 |
FT_UNUSED( min );
|
|
2492 |
FT_UNUSED( max );
|
|
2493 |
}
|
|
2494 |
|
|
2495 |
|
|
2496 |
static void
|
|
2497 |
Horizontal_Sweep_Span( RAS_ARGS Short y,
|
|
2498 |
FT_F26Dot6 x1,
|
|
2499 |
FT_F26Dot6 x2,
|
|
2500 |
PProfile left,
|
|
2501 |
PProfile right )
|
|
2502 |
{
|
|
2503 |
Long e1, e2;
|
|
2504 |
PByte bits;
|
|
2505 |
Byte f1;
|
|
2506 |
|
|
2507 |
FT_UNUSED( left );
|
|
2508 |
FT_UNUSED( right );
|
|
2509 |
|
|
2510 |
|
|
2511 |
if ( x2 - x1 < ras.precision )
|
|
2512 |
{
|
|
2513 |
e1 = CEILING( x1 );
|
|
2514 |
e2 = FLOOR ( x2 );
|
|
2515 |
|
|
2516 |
if ( e1 == e2 )
|
|
2517 |
{
|
|
2518 |
bits = ras.bTarget + ( y >> 3 );
|
|
2519 |
f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
|
2520 |
|
|
2521 |
e1 = TRUNC( e1 );
|
|
2522 |
|
|
2523 |
if ( e1 >= 0 && e1 < ras.target.rows )
|
|
2524 |
{
|
|
2525 |
PByte p;
|
|
2526 |
|
|
2527 |
|
|
2528 |
p = bits - e1 * ras.target.pitch;
|
|
2529 |
if ( ras.target.pitch > 0 )
|
|
2530 |
p += ( ras.target.rows - 1 ) * ras.target.pitch;
|
|
2531 |
|
|
2532 |
p[0] |= f1;
|
|
2533 |
}
|
|
2534 |
}
|
|
2535 |
}
|
|
2536 |
}
|
|
2537 |
|
|
2538 |
|
|
2539 |
static void
|
|
2540 |
Horizontal_Sweep_Drop( RAS_ARGS Short y,
|
|
2541 |
FT_F26Dot6 x1,
|
|
2542 |
FT_F26Dot6 x2,
|
|
2543 |
PProfile left,
|
|
2544 |
PProfile right )
|
|
2545 |
{
|
|
2546 |
Long e1, e2, pxl;
|
|
2547 |
PByte bits;
|
|
2548 |
Byte f1;
|
|
2549 |
|
|
2550 |
|
|
2551 |
/* During the horizontal sweep, we only take care of drop-outs */
|
|
2552 |
|
|
2553 |
/* e1 + <-- pixel center */
|
|
2554 |
/* | */
|
|
2555 |
/* x1 ---+--> <-- contour */
|
|
2556 |
/* | */
|
|
2557 |
/* | */
|
|
2558 |
/* x2 <--+--- <-- contour */
|
|
2559 |
/* | */
|
|
2560 |
/* | */
|
|
2561 |
/* e2 + <-- pixel center */
|
|
2562 |
|
|
2563 |
e1 = CEILING( x1 );
|
|
2564 |
e2 = FLOOR ( x2 );
|
|
2565 |
pxl = e1;
|
|
2566 |
|
|
2567 |
if ( e1 > e2 )
|
|
2568 |
{
|
|
2569 |
Int dropOutControl = left->flags & 7;
|
|
2570 |
|
|
2571 |
|
|
2572 |
if ( e1 == e2 + ras.precision )
|
|
2573 |
{
|
|
2574 |
switch ( dropOutControl )
|
|
2575 |
{
|
|
2576 |
case 0: /* simple drop-outs including stubs */
|
|
2577 |
pxl = e2;
|
|
2578 |
break;
|
|
2579 |
|
|
2580 |
case 4: /* smart drop-outs including stubs */
|
|
2581 |
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
2582 |
break;
|
|
2583 |
|
|
2584 |
case 1: /* simple drop-outs excluding stubs */
|
|
2585 |
case 5: /* smart drop-outs excluding stubs */
|
|
2586 |
/* see Vertical_Sweep_Drop for details */
|
|
2587 |
|
|
2588 |
/* rightmost stub test */
|
|
2589 |
if ( left->next == right &&
|
|
2590 |
left->height <= 0 &&
|
|
2591 |
!( left->flags & Overshoot_Top &&
|
|
2592 |
x2 - x1 >= ras.precision_half ) )
|
|
2593 |
return;
|
|
2594 |
|
|
2595 |
/* leftmost stub test */
|
|
2596 |
if ( right->next == left &&
|
|
2597 |
left->start == y &&
|
|
2598 |
!( left->flags & Overshoot_Bottom &&
|
|
2599 |
x2 - x1 >= ras.precision_half ) )
|
|
2600 |
return;
|
|
2601 |
|
|
2602 |
if ( dropOutControl == 1 )
|
|
2603 |
pxl = e2;
|
|
2604 |
else
|
|
2605 |
pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
2606 |
break;
|
|
2607 |
|
|
2608 |
default: /* modes 2, 3, 6, 7 */
|
|
2609 |
return; /* no drop-out control */
|
|
2610 |
}
|
|
2611 |
|
|
2612 |
/* undocumented but confirmed: If the drop-out would result in a */
|
|
2613 |
/* pixel outside of the bounding box, use the pixel inside of the */
|
|
2614 |
/* bounding box instead */
|
|
2615 |
if ( pxl < 0 )
|
|
2616 |
pxl = e1;
|
|
2617 |
else if ( TRUNC( pxl ) >= ras.target.rows )
|
|
2618 |
pxl = e2;
|
|
2619 |
|
|
2620 |
/* check that the other pixel isn't set */
|
|
2621 |
e1 = pxl == e1 ? e2 : e1;
|
|
2622 |
|
|
2623 |
e1 = TRUNC( e1 );
|
|
2624 |
|
|
2625 |
bits = ras.bTarget + ( y >> 3 );
|
|
2626 |
f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
|
2627 |
|
|
2628 |
bits -= e1 * ras.target.pitch;
|
|
2629 |
if ( ras.target.pitch > 0 )
|
|
2630 |
bits += ( ras.target.rows - 1 ) * ras.target.pitch;
|
|
2631 |
|
|
2632 |
if ( e1 >= 0 &&
|
|
2633 |
e1 < ras.target.rows &&
|
|
2634 |
*bits & f1 )
|
|
2635 |
return;
|
|
2636 |
}
|
|
2637 |
else
|
|
2638 |
return;
|
|
2639 |
}
|
|
2640 |
|
|
2641 |
bits = ras.bTarget + ( y >> 3 );
|
|
2642 |
f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
|
2643 |
|
|
2644 |
e1 = TRUNC( pxl );
|
|
2645 |
|
|
2646 |
if ( e1 >= 0 && e1 < ras.target.rows )
|
|
2647 |
{
|
|
2648 |
bits -= e1 * ras.target.pitch;
|
|
2649 |
if ( ras.target.pitch > 0 )
|
|
2650 |
bits += ( ras.target.rows - 1 ) * ras.target.pitch;
|
|
2651 |
|
|
2652 |
bits[0] |= f1;
|
|
2653 |
}
|
|
2654 |
}
|
|
2655 |
|
|
2656 |
|
|
2657 |
static void
|
|
2658 |
Horizontal_Sweep_Step( RAS_ARG )
|
|
2659 |
{
|
|
2660 |
/* Nothing, really */
|
|
2661 |
FT_UNUSED_RASTER;
|
|
2662 |
}
|
|
2663 |
|
|
2664 |
|
|
2665 |
#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
|
2666 |
|
|
2667 |
|
|
2668 |
/*************************************************************************/
|
|
2669 |
/* */
|
|
2670 |
/* Vertical Gray Sweep Procedure Set */
|
|
2671 |
/* */
|
|
2672 |
/* These two routines are used during the vertical gray-levels sweep */
|
|
2673 |
/* phase by the generic Draw_Sweep() function. */
|
|
2674 |
/* */
|
|
2675 |
/* NOTES */
|
|
2676 |
/* */
|
|
2677 |
/* - The target pixmap's width *must* be a multiple of 4. */
|
|
2678 |
/* */
|
|
2679 |
/* - You have to use the function Vertical_Sweep_Span() for the gray */
|
|
2680 |
/* span call. */
|
|
2681 |
/* */
|
|
2682 |
/*************************************************************************/
|
|
2683 |
|
|
2684 |
static void
|
|
2685 |
Vertical_Gray_Sweep_Init( RAS_ARGS Short* min,
|
|
2686 |
Short* max )
|
|
2687 |
{
|
|
2688 |
Long pitch, byte_len;
|
|
2689 |
|
|
2690 |
|
|
2691 |
*min = *min & -2;
|
|
2692 |
*max = ( *max + 3 ) & -2;
|
|
2693 |
|
|
2694 |
ras.traceOfs = 0;
|
|
2695 |
pitch = ras.target.pitch;
|
|
2696 |
byte_len = -pitch;
|
|
2697 |
ras.traceIncr = (Short)byte_len;
|
|
2698 |
ras.traceG = ( *min / 2 ) * byte_len;
|
|
2699 |
|
|
2700 |
if ( pitch > 0 )
|
|
2701 |
{
|
|
2702 |
ras.traceG += ( ras.target.rows - 1 ) * pitch;
|
|
2703 |
byte_len = -byte_len;
|
|
2704 |
}
|
|
2705 |
|
|
2706 |
ras.gray_min_x = (Short)byte_len;
|
|
2707 |
ras.gray_max_x = -(Short)byte_len;
|
|
2708 |
}
|
|
2709 |
|
|
2710 |
|
|
2711 |
static void
|
|
2712 |
Vertical_Gray_Sweep_Step( RAS_ARG )
|
|
2713 |
{
|
|
2714 |
Int c1, c2;
|
|
2715 |
PByte pix, bit, bit2;
|
|
2716 |
short* count = (short*)count_table;
|
|
2717 |
Byte* grays;
|
|
2718 |
|
|
2719 |
|
|
2720 |
ras.traceOfs += ras.gray_width;
|
|
2721 |
|
|
2722 |
if ( ras.traceOfs > ras.gray_width )
|
|
2723 |
{
|
|
2724 |
pix = ras.gTarget + ras.traceG + ras.gray_min_x * 4;
|
|
2725 |
grays = ras.grays;
|
|
2726 |
|
|
2727 |
if ( ras.gray_max_x >= 0 )
|
|
2728 |
{
|
|
2729 |
Long last_pixel = ras.target.width - 1;
|
|
2730 |
Int last_cell = last_pixel >> 2;
|
|
2731 |
Int last_bit = last_pixel & 3;
|
|
2732 |
Bool over = 0;
|
|
2733 |
|
|
2734 |
|
|
2735 |
if ( ras.gray_max_x >= last_cell && last_bit != 3 )
|
|
2736 |
{
|
|
2737 |
ras.gray_max_x = last_cell - 1;
|
|
2738 |
over = 1;
|
|
2739 |
}
|
|
2740 |
|
|
2741 |
if ( ras.gray_min_x < 0 )
|
|
2742 |
ras.gray_min_x = 0;
|
|
2743 |
|
|
2744 |
bit = ras.bTarget + ras.gray_min_x;
|
|
2745 |
bit2 = bit + ras.gray_width;
|
|
2746 |
|
|
2747 |
c1 = ras.gray_max_x - ras.gray_min_x;
|
|
2748 |
|
|
2749 |
while ( c1 >= 0 )
|
|
2750 |
{
|
|
2751 |
c2 = count[*bit] + count[*bit2];
|
|
2752 |
|
|
2753 |
if ( c2 )
|
|
2754 |
{
|
|
2755 |
pix[0] = grays[(c2 >> 12) & 0x000F];
|
|
2756 |
pix[1] = grays[(c2 >> 8 ) & 0x000F];
|
|
2757 |
pix[2] = grays[(c2 >> 4 ) & 0x000F];
|
|
2758 |
pix[3] = grays[ c2 & 0x000F];
|
|
2759 |
|
|
2760 |
*bit = 0;
|
|
2761 |
*bit2 = 0;
|
|
2762 |
}
|
|
2763 |
|
|
2764 |
bit++;
|
|
2765 |
bit2++;
|
|
2766 |
pix += 4;
|
|
2767 |
c1--;
|
|
2768 |
}
|
|
2769 |
|
|
2770 |
if ( over )
|
|
2771 |
{
|
|
2772 |
c2 = count[*bit] + count[*bit2];
|
|
2773 |
if ( c2 )
|
|
2774 |
{
|
|
2775 |
switch ( last_bit )
|
|
2776 |
{
|
|
2777 |
case 2:
|
|
2778 |
pix[2] = grays[(c2 >> 4 ) & 0x000F];
|
|
2779 |
case 1:
|
|
2780 |
pix[1] = grays[(c2 >> 8 ) & 0x000F];
|
|
2781 |
default:
|
|
2782 |
pix[0] = grays[(c2 >> 12) & 0x000F];
|
|
2783 |
}
|
|
2784 |
|
|
2785 |
*bit = 0;
|
|
2786 |
*bit2 = 0;
|
|
2787 |
}
|
|
2788 |
}
|
|
2789 |
}
|
|
2790 |
|
|
2791 |
ras.traceOfs = 0;
|
|
2792 |
ras.traceG += ras.traceIncr;
|
|
2793 |
|
|
2794 |
ras.gray_min_x = 32000;
|
|
2795 |
ras.gray_max_x = -32000;
|
|
2796 |
}
|
|
2797 |
}
|
|
2798 |
|
|
2799 |
|
|
2800 |
static void
|
|
2801 |
Horizontal_Gray_Sweep_Span( RAS_ARGS Short y,
|
|
2802 |
FT_F26Dot6 x1,
|
|
2803 |
FT_F26Dot6 x2,
|
|
2804 |
PProfile left,
|
|
2805 |
PProfile right )
|
|
2806 |
{
|
|
2807 |
/* nothing, really */
|
|
2808 |
FT_UNUSED_RASTER;
|
|
2809 |
FT_UNUSED( y );
|
|
2810 |
FT_UNUSED( x1 );
|
|
2811 |
FT_UNUSED( x2 );
|
|
2812 |
FT_UNUSED( left );
|
|
2813 |
FT_UNUSED( right );
|
|
2814 |
}
|
|
2815 |
|
|
2816 |
|
|
2817 |
static void
|
|
2818 |
Horizontal_Gray_Sweep_Drop( RAS_ARGS Short y,
|
|
2819 |
FT_F26Dot6 x1,
|
|
2820 |
FT_F26Dot6 x2,
|
|
2821 |
PProfile left,
|
|
2822 |
PProfile right )
|
|
2823 |
{
|
|
2824 |
Long e1, e2;
|
|
2825 |
PByte pixel;
|
|
2826 |
Byte color;
|
|
2827 |
|
|
2828 |
|
|
2829 |
/* During the horizontal sweep, we only take care of drop-outs */
|
|
2830 |
|
|
2831 |
e1 = CEILING( x1 );
|
|
2832 |
e2 = FLOOR ( x2 );
|
|
2833 |
|
|
2834 |
if ( e1 > e2 )
|
|
2835 |
{
|
|
2836 |
Int dropOutControl = left->flags & 7;
|
|
2837 |
|
|
2838 |
|
|
2839 |
if ( e1 == e2 + ras.precision )
|
|
2840 |
{
|
|
2841 |
switch ( dropOutControl )
|
|
2842 |
{
|
|
2843 |
case 0: /* simple drop-outs including stubs */
|
|
2844 |
e1 = e2;
|
|
2845 |
break;
|
|
2846 |
|
|
2847 |
case 4: /* smart drop-outs including stubs */
|
|
2848 |
e1 = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
2849 |
break;
|
|
2850 |
|
|
2851 |
case 1: /* simple drop-outs excluding stubs */
|
|
2852 |
case 5: /* smart drop-outs excluding stubs */
|
|
2853 |
/* see Vertical_Sweep_Drop for details */
|
|
2854 |
|
|
2855 |
/* rightmost stub test */
|
|
2856 |
if ( left->next == right && left->height <= 0 )
|
|
2857 |
return;
|
|
2858 |
|
|
2859 |
/* leftmost stub test */
|
|
2860 |
if ( right->next == left && left->start == y )
|
|
2861 |
return;
|
|
2862 |
|
|
2863 |
if ( dropOutControl == 1 )
|
|
2864 |
e1 = e2;
|
|
2865 |
else
|
|
2866 |
e1 = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
|
2867 |
|
|
2868 |
break;
|
|
2869 |
|
|
2870 |
default: /* modes 2, 3, 6, 7 */
|
|
2871 |
return; /* no drop-out control */
|
|
2872 |
}
|
|
2873 |
}
|
|
2874 |
else
|
|
2875 |
return;
|
|
2876 |
}
|
|
2877 |
|
|
2878 |
if ( e1 >= 0 )
|
|
2879 |
{
|
|
2880 |
if ( x2 - x1 >= ras.precision_half )
|
|
2881 |
color = ras.grays[2];
|
|
2882 |
else
|
|
2883 |
color = ras.grays[1];
|
|
2884 |
|
|
2885 |
e1 = TRUNC( e1 ) / 2;
|
|
2886 |
if ( e1 < ras.target.rows )
|
|
2887 |
{
|
|
2888 |
pixel = ras.gTarget - e1 * ras.target.pitch + y / 2;
|
|
2889 |
if ( ras.target.pitch > 0 )
|
|
2890 |
pixel += ( ras.target.rows - 1 ) * ras.target.pitch;
|
|
2891 |
|
|
2892 |
if ( pixel[0] == ras.grays[0] )
|
|
2893 |
pixel[0] = color;
|
|
2894 |
}
|
|
2895 |
}
|
|
2896 |
}
|
|
2897 |
|
|
2898 |
|
|
2899 |
#endif /* FT_RASTER_OPTION_ANTI_ALIASING */
|
|
2900 |
|
|
2901 |
|
|
2902 |
/*************************************************************************/
|
|
2903 |
/* */
|
|
2904 |
/* Generic Sweep Drawing routine */
|
|
2905 |
/* */
|
|
2906 |
/*************************************************************************/
|
|
2907 |
|
|
2908 |
static Bool
|
|
2909 |
Draw_Sweep( RAS_ARG )
|
|
2910 |
{
|
|
2911 |
Short y, y_change, y_height;
|
|
2912 |
|
|
2913 |
PProfile P, Q, P_Left, P_Right;
|
|
2914 |
|
|
2915 |
Short min_Y, max_Y, top, bottom, dropouts;
|
|
2916 |
|
|
2917 |
Long x1, x2, xs, e1, e2;
|
|
2918 |
|
|
2919 |
TProfileList waiting;
|
|
2920 |
TProfileList draw_left, draw_right;
|
|
2921 |
|
|
2922 |
|
|
2923 |
/* initialize empty linked lists */
|
|
2924 |
|
|
2925 |
Init_Linked( &waiting );
|
|
2926 |
|
|
2927 |
Init_Linked( &draw_left );
|
|
2928 |
Init_Linked( &draw_right );
|
|
2929 |
|
|
2930 |
/* first, compute min and max Y */
|
|
2931 |
|
|
2932 |
P = ras.fProfile;
|
|
2933 |
max_Y = (Short)TRUNC( ras.minY );
|
|
2934 |
min_Y = (Short)TRUNC( ras.maxY );
|
|
2935 |
|
|
2936 |
while ( P )
|
|
2937 |
{
|
|
2938 |
Q = P->link;
|
|
2939 |
|
|
2940 |
bottom = (Short)P->start;
|
|
2941 |
top = (Short)( P->start + P->height - 1 );
|
|
2942 |
|
|
2943 |
if ( min_Y > bottom )
|
|
2944 |
min_Y = bottom;
|
|
2945 |
if ( max_Y < top )
|
|
2946 |
max_Y = top;
|
|
2947 |
|
|
2948 |
P->X = 0;
|
|
2949 |
InsNew( &waiting, P );
|
|
2950 |
|
|
2951 |
P = Q;
|
|
2952 |
}
|
|
2953 |
|
|
2954 |
/* check the Y-turns */
|
|
2955 |
if ( ras.numTurns == 0 )
|
|
2956 |
{
|
|
2957 |
ras.error = Raster_Err_Invalid;
|
|
2958 |
return FAILURE;
|
|
2959 |
}
|
|
2960 |
|
|
2961 |
/* now initialize the sweep */
|
|
2962 |
|
|
2963 |
ras.Proc_Sweep_Init( RAS_VARS &min_Y, &max_Y );
|
|
2964 |
|
|
2965 |
/* then compute the distance of each profile from min_Y */
|
|
2966 |
|
|
2967 |
P = waiting;
|
|
2968 |
|
|
2969 |
while ( P )
|
|
2970 |
{
|
|
2971 |
P->countL = (UShort)( P->start - min_Y );
|
|
2972 |
P = P->link;
|
|
2973 |
}
|
|
2974 |
|
|
2975 |
/* let's go */
|
|
2976 |
|
|
2977 |
y = min_Y;
|
|
2978 |
y_height = 0;
|
|
2979 |
|
|
2980 |
if ( ras.numTurns > 0 &&
|
|
2981 |
ras.sizeBuff[-ras.numTurns] == min_Y )
|
|
2982 |
ras.numTurns--;
|
|
2983 |
|
|
2984 |
while ( ras.numTurns > 0 )
|
|
2985 |
{
|
|
2986 |
/* check waiting list for new activations */
|
|
2987 |
|
|
2988 |
P = waiting;
|
|
2989 |
|
|
2990 |
while ( P )
|
|
2991 |
{
|
|
2992 |
Q = P->link;
|
|
2993 |
P->countL -= y_height;
|
|
2994 |
if ( P->countL == 0 )
|
|
2995 |
{
|
|
2996 |
DelOld( &waiting, P );
|
|
2997 |
|
|
2998 |
if ( P->flags & Flow_Up )
|
|
2999 |
InsNew( &draw_left, P );
|
|
3000 |
else
|
|
3001 |
InsNew( &draw_right, P );
|
|
3002 |
}
|
|
3003 |
|
|
3004 |
P = Q;
|
|
3005 |
}
|
|
3006 |
|
|
3007 |
/* sort the drawing lists */
|
|
3008 |
|
|
3009 |
Sort( &draw_left );
|
|
3010 |
Sort( &draw_right );
|
|
3011 |
|
|
3012 |
y_change = (Short)ras.sizeBuff[-ras.numTurns--];
|
|
3013 |
y_height = (Short)( y_change - y );
|
|
3014 |
|
|
3015 |
while ( y < y_change )
|
|
3016 |
{
|
|
3017 |
/* let's trace */
|
|
3018 |
|
|
3019 |
dropouts = 0;
|
|
3020 |
|
|
3021 |
P_Left = draw_left;
|
|
3022 |
P_Right = draw_right;
|
|
3023 |
|
|
3024 |
while ( P_Left )
|
|
3025 |
{
|
|
3026 |
x1 = P_Left ->X;
|
|
3027 |
x2 = P_Right->X;
|
|
3028 |
|
|
3029 |
if ( x1 > x2 )
|
|
3030 |
{
|
|
3031 |
xs = x1;
|
|
3032 |
x1 = x2;
|
|
3033 |
x2 = xs;
|
|
3034 |
}
|
|
3035 |
|
|
3036 |
e1 = FLOOR( x1 );
|
|
3037 |
e2 = CEILING( x2 );
|
|
3038 |
|
|
3039 |
if ( x2 - x1 <= ras.precision &&
|
|
3040 |
e1 != x1 && e2 != x2 )
|
|
3041 |
{
|
|
3042 |
if ( e1 > e2 || e2 == e1 + ras.precision )
|
|
3043 |
{
|
|
3044 |
Int dropOutControl = P_Left->flags & 7;
|
|
3045 |
|
|
3046 |
|
|
3047 |
if ( dropOutControl != 2 )
|
|
3048 |
{
|
|
3049 |
/* a drop-out was detected */
|
|
3050 |
|
|
3051 |
P_Left ->X = x1;
|
|
3052 |
P_Right->X = x2;
|
|
3053 |
|
|
3054 |
/* mark profile for drop-out processing */
|
|
3055 |
P_Left->countL = 1;
|
|
3056 |
dropouts++;
|
|
3057 |
}
|
|
3058 |
|
|
3059 |
goto Skip_To_Next;
|
|
3060 |
}
|
|
3061 |
}
|
|
3062 |
|
|
3063 |
ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right );
|
|
3064 |
|
|
3065 |
Skip_To_Next:
|
|
3066 |
|
|
3067 |
P_Left = P_Left->link;
|
|
3068 |
P_Right = P_Right->link;
|
|
3069 |
}
|
|
3070 |
|
|
3071 |
/* handle drop-outs _after_ the span drawing -- */
|
|
3072 |
/* drop-out processing has been moved out of the loop */
|
|
3073 |
/* for performance tuning */
|
|
3074 |
if ( dropouts > 0 )
|
|
3075 |
goto Scan_DropOuts;
|
|
3076 |
|
|
3077 |
Next_Line:
|
|
3078 |
|
|
3079 |
ras.Proc_Sweep_Step( RAS_VAR );
|
|
3080 |
|
|
3081 |
y++;
|
|
3082 |
|
|
3083 |
if ( y < y_change )
|
|
3084 |
{
|
|
3085 |
Sort( &draw_left );
|
|
3086 |
Sort( &draw_right );
|
|
3087 |
}
|
|
3088 |
}
|
|
3089 |
|
|
3090 |
/* now finalize the profiles that need it */
|
|
3091 |
|
|
3092 |
P = draw_left;
|
|
3093 |
while ( P )
|
|
3094 |
{
|
|
3095 |
Q = P->link;
|
|
3096 |
if ( P->height == 0 )
|
|
3097 |
DelOld( &draw_left, P );
|
|
3098 |
P = Q;
|
|
3099 |
}
|
|
3100 |
|
|
3101 |
P = draw_right;
|
|
3102 |
while ( P )
|
|
3103 |
{
|
|
3104 |
Q = P->link;
|
|
3105 |
if ( P->height == 0 )
|
|
3106 |
DelOld( &draw_right, P );
|
|
3107 |
P = Q;
|
|
3108 |
}
|
|
3109 |
}
|
|
3110 |
|
|
3111 |
/* for gray-scaling, flush the bitmap scanline cache */
|
|
3112 |
while ( y <= max_Y )
|
|
3113 |
{
|
|
3114 |
ras.Proc_Sweep_Step( RAS_VAR );
|
|
3115 |
y++;
|
|
3116 |
}
|
|
3117 |
|
|
3118 |
return SUCCESS;
|
|
3119 |
|
|
3120 |
Scan_DropOuts:
|
|
3121 |
|
|
3122 |
P_Left = draw_left;
|
|
3123 |
P_Right = draw_right;
|
|
3124 |
|
|
3125 |
while ( P_Left )
|
|
3126 |
{
|
|
3127 |
if ( P_Left->countL )
|
|
3128 |
{
|
|
3129 |
P_Left->countL = 0;
|
|
3130 |
#if 0
|
|
3131 |
dropouts--; /* -- this is useful when debugging only */
|
|
3132 |
#endif
|
|
3133 |
ras.Proc_Sweep_Drop( RAS_VARS y,
|
|
3134 |
P_Left->X,
|
|
3135 |
P_Right->X,
|
|
3136 |
P_Left,
|
|
3137 |
P_Right );
|
|
3138 |
}
|
|
3139 |
|
|
3140 |
P_Left = P_Left->link;
|
|
3141 |
P_Right = P_Right->link;
|
|
3142 |
}
|
|
3143 |
|
|
3144 |
goto Next_Line;
|
|
3145 |
}
|
|
3146 |
|
|
3147 |
|
|
3148 |
/*************************************************************************/
|
|
3149 |
/* */
|
|
3150 |
/* <Function> */
|
|
3151 |
/* Render_Single_Pass */
|
|
3152 |
/* */
|
|
3153 |
/* <Description> */
|
|
3154 |
/* Perform one sweep with sub-banding. */
|
|
3155 |
/* */
|
|
3156 |
/* <Input> */
|
|
3157 |
/* flipped :: If set, flip the direction of the outline. */
|
|
3158 |
/* */
|
|
3159 |
/* <Return> */
|
|
3160 |
/* Renderer error code. */
|
|
3161 |
/* */
|
|
3162 |
static int
|
|
3163 |
Render_Single_Pass( RAS_ARGS Bool flipped )
|
|
3164 |
{
|
|
3165 |
Short i, j, k;
|
|
3166 |
|
|
3167 |
|
|
3168 |
while ( ras.band_top >= 0 )
|
|
3169 |
{
|
|
3170 |
ras.maxY = (Long)ras.band_stack[ras.band_top].y_max * ras.precision;
|
|
3171 |
ras.minY = (Long)ras.band_stack[ras.band_top].y_min * ras.precision;
|
|
3172 |
|
|
3173 |
ras.top = ras.buff;
|
|
3174 |
|
|
3175 |
ras.error = Raster_Err_None;
|
|
3176 |
|
|
3177 |
if ( Convert_Glyph( RAS_VARS flipped ) )
|
|
3178 |
{
|
|
3179 |
if ( ras.error != Raster_Err_Overflow )
|
|
3180 |
return FAILURE;
|
|
3181 |
|
|
3182 |
ras.error = Raster_Err_None;
|
|
3183 |
|
|
3184 |
/* sub-banding */
|
|
3185 |
|
|
3186 |
#ifdef DEBUG_RASTER
|
|
3187 |
ClearBand( RAS_VARS TRUNC( ras.minY ), TRUNC( ras.maxY ) );
|
|
3188 |
#endif
|
|
3189 |
|
|
3190 |
i = ras.band_stack[ras.band_top].y_min;
|
|
3191 |
j = ras.band_stack[ras.band_top].y_max;
|
|
3192 |
|
|
3193 |
k = (Short)( ( i + j ) / 2 );
|
|
3194 |
|
|
3195 |
if ( ras.band_top >= 7 || k < i )
|
|
3196 |
{
|
|
3197 |
ras.band_top = 0;
|
|
3198 |
ras.error = Raster_Err_Invalid;
|
|
3199 |
|
|
3200 |
return ras.error;
|
|
3201 |
}
|
|
3202 |
|
|
3203 |
ras.band_stack[ras.band_top + 1].y_min = k;
|
|
3204 |
ras.band_stack[ras.band_top + 1].y_max = j;
|
|
3205 |
|
|
3206 |
ras.band_stack[ras.band_top].y_max = (Short)( k - 1 );
|
|
3207 |
|
|
3208 |
ras.band_top++;
|
|
3209 |
}
|
|
3210 |
else
|
|
3211 |
{
|
|
3212 |
if ( ras.fProfile )
|
|
3213 |
if ( Draw_Sweep( RAS_VAR ) )
|
|
3214 |
return ras.error;
|
|
3215 |
ras.band_top--;
|
|
3216 |
}
|
|
3217 |
}
|
|
3218 |
|
|
3219 |
return SUCCESS;
|
|
3220 |
}
|
|
3221 |
|
|
3222 |
|
|
3223 |
/*************************************************************************/
|
|
3224 |
/* */
|
|
3225 |
/* <Function> */
|
|
3226 |
/* Render_Glyph */
|
|
3227 |
/* */
|
|
3228 |
/* <Description> */
|
|
3229 |
/* Render a glyph in a bitmap. Sub-banding if needed. */
|
|
3230 |
/* */
|
|
3231 |
/* <Return> */
|
|
3232 |
/* FreeType error code. 0 means success. */
|
|
3233 |
/* */
|
|
3234 |
FT_LOCAL_DEF( FT_Error )
|
|
3235 |
Render_Glyph( RAS_ARG )
|
|
3236 |
{
|
|
3237 |
FT_Error error;
|
|
3238 |
|
|
3239 |
|
|
3240 |
Set_High_Precision( RAS_VARS ras.outline.flags &
|
|
3241 |
FT_OUTLINE_HIGH_PRECISION );
|
|
3242 |
ras.scale_shift = ras.precision_shift;
|
|
3243 |
|
|
3244 |
if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS )
|
|
3245 |
ras.dropOutControl = 2;
|
|
3246 |
else
|
|
3247 |
{
|
|
3248 |
if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS )
|
|
3249 |
ras.dropOutControl = 4;
|
|
3250 |
else
|
|
3251 |
ras.dropOutControl = 0;
|
|
3252 |
|
|
3253 |
if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) )
|
|
3254 |
ras.dropOutControl += 1;
|
|
3255 |
}
|
|
3256 |
|
|
3257 |
ras.second_pass = (FT_Byte)( !( ras.outline.flags &
|
|
3258 |
FT_OUTLINE_SINGLE_PASS ) );
|
|
3259 |
|
|
3260 |
/* Vertical Sweep */
|
|
3261 |
ras.Proc_Sweep_Init = Vertical_Sweep_Init;
|
|
3262 |
ras.Proc_Sweep_Span = Vertical_Sweep_Span;
|
|
3263 |
ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
|
|
3264 |
ras.Proc_Sweep_Step = Vertical_Sweep_Step;
|
|
3265 |
|
|
3266 |
ras.band_top = 0;
|
|
3267 |
ras.band_stack[0].y_min = 0;
|
|
3268 |
ras.band_stack[0].y_max = (short)( ras.target.rows - 1 );
|
|
3269 |
|
|
3270 |
ras.bWidth = (unsigned short)ras.target.width;
|
|
3271 |
ras.bTarget = (Byte*)ras.target.buffer;
|
|
3272 |
|
|
3273 |
if ( ( error = Render_Single_Pass( RAS_VARS 0 ) ) != 0 )
|
|
3274 |
return error;
|
|
3275 |
|
|
3276 |
/* Horizontal Sweep */
|
|
3277 |
if ( ras.second_pass && ras.dropOutControl != 2 )
|
|
3278 |
{
|
|
3279 |
ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
|
|
3280 |
ras.Proc_Sweep_Span = Horizontal_Sweep_Span;
|
|
3281 |
ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop;
|
|
3282 |
ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
|
|
3283 |
|
|
3284 |
ras.band_top = 0;
|
|
3285 |
ras.band_stack[0].y_min = 0;
|
|
3286 |
ras.band_stack[0].y_max = (short)( ras.target.width - 1 );
|
|
3287 |
|
|
3288 |
if ( ( error = Render_Single_Pass( RAS_VARS 1 ) ) != 0 )
|
|
3289 |
return error;
|
|
3290 |
}
|
|
3291 |
|
|
3292 |
return Raster_Err_None;
|
|
3293 |
}
|
|
3294 |
|
|
3295 |
|
|
3296 |
#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
|
3297 |
|
|
3298 |
/*************************************************************************/
|
|
3299 |
/* */
|
|
3300 |
/* <Function> */
|
|
3301 |
/* Render_Gray_Glyph */
|
|
3302 |
/* */
|
|
3303 |
/* <Description> */
|
|
3304 |
/* Render a glyph with grayscaling. Sub-banding if needed. */
|
|
3305 |
/* */
|
|
3306 |
/* <Return> */
|
|
3307 |
/* FreeType error code. 0 means success. */
|
|
3308 |
/* */
|
|
3309 |
FT_LOCAL_DEF( FT_Error )
|
|
3310 |
Render_Gray_Glyph( RAS_ARG )
|
|
3311 |
{
|
|
3312 |
Long pixel_width;
|
|
3313 |
FT_Error error;
|
|
3314 |
|
|
3315 |
|
|
3316 |
Set_High_Precision( RAS_VARS ras.outline.flags &
|
|
3317 |
FT_OUTLINE_HIGH_PRECISION );
|
|
3318 |
ras.scale_shift = ras.precision_shift + 1;
|
|
3319 |
|
|
3320 |
if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS )
|
|
3321 |
ras.dropOutControl = 2;
|
|
3322 |
else
|
|
3323 |
{
|
|
3324 |
if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS )
|
|
3325 |
ras.dropOutControl = 4;
|
|
3326 |
else
|
|
3327 |
ras.dropOutControl = 0;
|
|
3328 |
|
|
3329 |
if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) )
|
|
3330 |
ras.dropOutControl += 1;
|
|
3331 |
}
|
|
3332 |
|
|
3333 |
ras.second_pass = !( ras.outline.flags & FT_OUTLINE_SINGLE_PASS );
|
|
3334 |
|
|
3335 |
/* Vertical Sweep */
|
|
3336 |
|
|
3337 |
ras.band_top = 0;
|
|
3338 |
ras.band_stack[0].y_min = 0;
|
|
3339 |
ras.band_stack[0].y_max = 2 * ras.target.rows - 1;
|
|
3340 |
|
|
3341 |
ras.bWidth = ras.gray_width;
|
|
3342 |
pixel_width = 2 * ( ( ras.target.width + 3 ) >> 2 );
|
|
3343 |
|
|
3344 |
if ( ras.bWidth > pixel_width )
|
|
3345 |
ras.bWidth = pixel_width;
|
|
3346 |
|
|
3347 |
ras.bWidth = ras.bWidth * 8;
|
|
3348 |
ras.bTarget = (Byte*)ras.gray_lines;
|
|
3349 |
ras.gTarget = (Byte*)ras.target.buffer;
|
|
3350 |
|
|
3351 |
ras.Proc_Sweep_Init = Vertical_Gray_Sweep_Init;
|
|
3352 |
ras.Proc_Sweep_Span = Vertical_Sweep_Span;
|
|
3353 |
ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
|
|
3354 |
ras.Proc_Sweep_Step = Vertical_Gray_Sweep_Step;
|
|
3355 |
|
|
3356 |
error = Render_Single_Pass( RAS_VARS 0 );
|
|
3357 |
if ( error )
|
|
3358 |
return error;
|
|
3359 |
|
|
3360 |
/* Horizontal Sweep */
|
|
3361 |
if ( ras.second_pass && ras.dropOutControl != 2 )
|
|
3362 |
{
|
|
3363 |
ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
|
|
3364 |
ras.Proc_Sweep_Span = Horizontal_Gray_Sweep_Span;
|
|
3365 |
ras.Proc_Sweep_Drop = Horizontal_Gray_Sweep_Drop;
|
|
3366 |
ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
|
|
3367 |
|
|
3368 |
ras.band_top = 0;
|
|
3369 |
ras.band_stack[0].y_min = 0;
|
|
3370 |
ras.band_stack[0].y_max = ras.target.width * 2 - 1;
|
|
3371 |
|
|
3372 |
error = Render_Single_Pass( RAS_VARS 1 );
|
|
3373 |
if ( error )
|
|
3374 |
return error;
|
|
3375 |
}
|
|
3376 |
|
|
3377 |
return Raster_Err_None;
|
|
3378 |
}
|
|
3379 |
|
|
3380 |
#else /* !FT_RASTER_OPTION_ANTI_ALIASING */
|
|
3381 |
|
|
3382 |
FT_LOCAL_DEF( FT_Error )
|
|
3383 |
Render_Gray_Glyph( RAS_ARG )
|
|
3384 |
{
|
|
3385 |
FT_UNUSED_RASTER;
|
|
3386 |
|
|
3387 |
return Raster_Err_Unsupported;
|
|
3388 |
}
|
|
3389 |
|
|
3390 |
#endif /* !FT_RASTER_OPTION_ANTI_ALIASING */
|
|
3391 |
|
|
3392 |
|
|
3393 |
static void
|
|
3394 |
ft_black_init( PRaster raster )
|
|
3395 |
{
|
|
3396 |
#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
|
3397 |
FT_UInt n;
|
|
3398 |
|
|
3399 |
|
|
3400 |
/* set default 5-levels gray palette */
|
|
3401 |
for ( n = 0; n < 5; n++ )
|
|
3402 |
raster->grays[n] = n * 255 / 4;
|
|
3403 |
|
|
3404 |
raster->gray_width = RASTER_GRAY_LINES / 2;
|
|
3405 |
#else
|
|
3406 |
FT_UNUSED( raster );
|
|
3407 |
#endif
|
|
3408 |
}
|
|
3409 |
|
|
3410 |
|
|
3411 |
/**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
|
|
3412 |
/**** a static object. *****/
|
|
3413 |
|
|
3414 |
|
|
3415 |
#ifdef _STANDALONE_
|
|
3416 |
|
|
3417 |
|
|
3418 |
static int
|
|
3419 |
ft_black_new( void* memory,
|
|
3420 |
FT_Raster *araster )
|
|
3421 |
{
|
|
3422 |
static TRaster the_raster;
|
|
3423 |
FT_UNUSED( memory );
|
|
3424 |
|
|
3425 |
|
|
3426 |
*araster = (FT_Raster)&the_raster;
|
|
3427 |
FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
|
|
3428 |
ft_black_init( &the_raster );
|
|
3429 |
|
|
3430 |
return 0;
|
|
3431 |
}
|
|
3432 |
|
|
3433 |
|
|
3434 |
static void
|
|
3435 |
ft_black_done( FT_Raster raster )
|
|
3436 |
{
|
|
3437 |
/* nothing */
|
|
3438 |
FT_UNUSED( raster );
|
|
3439 |
}
|
|
3440 |
|
|
3441 |
|
|
3442 |
#else /* !_STANDALONE_ */
|
|
3443 |
|
|
3444 |
|
|
3445 |
static int
|
|
3446 |
ft_black_new( FT_Memory memory,
|
|
3447 |
PRaster *araster )
|
|
3448 |
{
|
|
3449 |
FT_Error error;
|
|
3450 |
PRaster raster = NULL;
|
|
3451 |
|
|
3452 |
|
|
3453 |
*araster = 0;
|
|
3454 |
if ( !FT_NEW( raster ) )
|
|
3455 |
{
|
|
3456 |
raster->memory = memory;
|
|
3457 |
ft_black_init( raster );
|
|
3458 |
|
|
3459 |
*araster = raster;
|
|
3460 |
}
|
|
3461 |
|
|
3462 |
return error;
|
|
3463 |
}
|
|
3464 |
|
|
3465 |
|
|
3466 |
static void
|
|
3467 |
ft_black_done( PRaster raster )
|
|
3468 |
{
|
|
3469 |
FT_Memory memory = (FT_Memory)raster->memory;
|
|
3470 |
FT_FREE( raster );
|
|
3471 |
}
|
|
3472 |
|
|
3473 |
|
|
3474 |
#endif /* !_STANDALONE_ */
|
|
3475 |
|
|
3476 |
|
|
3477 |
static void
|
|
3478 |
ft_black_reset( PRaster raster,
|
|
3479 |
char* pool_base,
|
|
3480 |
long pool_size )
|
|
3481 |
{
|
|
3482 |
if ( raster )
|
|
3483 |
{
|
|
3484 |
if ( pool_base && pool_size >= (long)sizeof(TWorker) + 2048 )
|
|
3485 |
{
|
|
3486 |
PWorker worker = (PWorker)pool_base;
|
|
3487 |
|
|
3488 |
|
|
3489 |
raster->buffer = pool_base + ( ( sizeof ( *worker ) + 7 ) & ~7 );
|
|
3490 |
raster->buffer_size = pool_base + pool_size - (char*)raster->buffer;
|
|
3491 |
raster->worker = worker;
|
|
3492 |
}
|
|
3493 |
else
|
|
3494 |
{
|
|
3495 |
raster->buffer = NULL;
|
|
3496 |
raster->buffer_size = 0;
|
|
3497 |
raster->worker = NULL;
|
|
3498 |
}
|
|
3499 |
}
|
|
3500 |
}
|
|
3501 |
|
|
3502 |
|
|
3503 |
static void
|
|
3504 |
ft_black_set_mode( PRaster raster,
|
|
3505 |
unsigned long mode,
|
|
3506 |
const char* palette )
|
|
3507 |
{
|
|
3508 |
#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
|
3509 |
|
|
3510 |
if ( mode == FT_MAKE_TAG( 'p', 'a', 'l', '5' ) )
|
|
3511 |
{
|
|
3512 |
/* set 5-levels gray palette */
|
|
3513 |
raster->grays[0] = palette[0];
|
|
3514 |
raster->grays[1] = palette[1];
|
|
3515 |
raster->grays[2] = palette[2];
|
|
3516 |
raster->grays[3] = palette[3];
|
|
3517 |
raster->grays[4] = palette[4];
|
|
3518 |
}
|
|
3519 |
|
|
3520 |
#else
|
|
3521 |
|
|
3522 |
FT_UNUSED( raster );
|
|
3523 |
FT_UNUSED( mode );
|
|
3524 |
FT_UNUSED( palette );
|
|
3525 |
|
|
3526 |
#endif
|
|
3527 |
}
|
|
3528 |
|
|
3529 |
|
|
3530 |
static int
|
|
3531 |
ft_black_render( PRaster raster,
|
|
3532 |
const FT_Raster_Params* params )
|
|
3533 |
{
|
|
3534 |
const FT_Outline* outline = (const FT_Outline*)params->source;
|
|
3535 |
const FT_Bitmap* target_map = params->target;
|
|
3536 |
PWorker worker;
|
|
3537 |
|
|
3538 |
|
|
3539 |
if ( !raster || !raster->buffer || !raster->buffer_size )
|
|
3540 |
return Raster_Err_Not_Ini;
|
|
3541 |
|
|
3542 |
if ( !outline )
|
|
3543 |
return Raster_Err_Invalid;
|
|
3544 |
|
|
3545 |
/* return immediately if the outline is empty */
|
|
3546 |
if ( outline->n_points == 0 || outline->n_contours <= 0 )
|
|
3547 |
return Raster_Err_None;
|
|
3548 |
|
|
3549 |
if ( !outline->contours || !outline->points )
|
|
3550 |
return Raster_Err_Invalid;
|
|
3551 |
|
|
3552 |
if ( outline->n_points !=
|
|
3553 |
outline->contours[outline->n_contours - 1] + 1 )
|
|
3554 |
return Raster_Err_Invalid;
|
|
3555 |
|
|
3556 |
worker = raster->worker;
|
|
3557 |
|
|
3558 |
/* this version of the raster does not support direct rendering, sorry */
|
|
3559 |
if ( params->flags & FT_RASTER_FLAG_DIRECT )
|
|
3560 |
return Raster_Err_Unsupported;
|
|
3561 |
|
|
3562 |
if ( !target_map )
|
|
3563 |
return Raster_Err_Invalid;
|
|
3564 |
|
|
3565 |
/* nothing to do */
|
|
3566 |
if ( !target_map->width || !target_map->rows )
|
|
3567 |
return Raster_Err_None;
|
|
3568 |
|
|
3569 |
if ( !target_map->buffer )
|
|
3570 |
return Raster_Err_Invalid;
|
|
3571 |
|
|
3572 |
ras.outline = *outline;
|
|
3573 |
ras.target = *target_map;
|
|
3574 |
|
|
3575 |
worker->buff = (PLong) raster->buffer;
|
|
3576 |
worker->sizeBuff = worker->buff +
|
|
3577 |
raster->buffer_size / sizeof ( Long );
|
|
3578 |
#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
|
3579 |
worker->grays = raster->grays;
|
|
3580 |
worker->gray_width = raster->gray_width;
|
|
3581 |
|
|
3582 |
FT_MEM_ZERO( worker->gray_lines, worker->gray_width * 2 );
|
|
3583 |
#endif
|
|
3584 |
|
|
3585 |
return ( params->flags & FT_RASTER_FLAG_AA )
|
|
3586 |
? Render_Gray_Glyph( RAS_VAR )
|
|
3587 |
: Render_Glyph( RAS_VAR );
|
|
3588 |
}
|
|
3589 |
|
|
3590 |
|
|
3591 |
FT_DEFINE_RASTER_FUNCS( ft_standard_raster,
|
|
3592 |
FT_GLYPH_FORMAT_OUTLINE,
|
|
3593 |
(FT_Raster_New_Func) ft_black_new,
|
|
3594 |
(FT_Raster_Reset_Func) ft_black_reset,
|
|
3595 |
(FT_Raster_Set_Mode_Func)ft_black_set_mode,
|
|
3596 |
(FT_Raster_Render_Func) ft_black_render,
|
|
3597 |
(FT_Raster_Done_Func) ft_black_done
|
|
3598 |
)
|
|
3599 |
|
|
3600 |
|
|
3601 |
/* END */
|