5172
|
1 |
/* inftrees.c -- generate Huffman trees for efficient decoding
|
|
2 |
* Copyright (C) 1995-2002 Mark Adler
|
|
3 |
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
4 |
*/
|
|
5 |
|
|
6 |
#include "zutil.h"
|
|
7 |
#include "inftrees.h"
|
|
8 |
|
|
9 |
#if !defined(BUILDFIXED) && !defined(STDC)
|
|
10 |
# define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */
|
|
11 |
#endif
|
|
12 |
|
|
13 |
|
|
14 |
#if 0
|
|
15 |
local const char inflate_copyright[] =
|
|
16 |
" inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
|
|
17 |
#endif
|
|
18 |
/*
|
|
19 |
If you use the zlib library in a product, an acknowledgment is welcome
|
|
20 |
in the documentation of your product. If for some reason you cannot
|
|
21 |
include such an acknowledgment, I would appreciate that you keep this
|
|
22 |
copyright string in the executable of your product.
|
|
23 |
*/
|
|
24 |
|
|
25 |
/* simplify the use of the inflate_huft type with some defines */
|
|
26 |
#define exop word.what.Exop
|
|
27 |
#define bits word.what.Bits
|
|
28 |
|
|
29 |
|
|
30 |
local int huft_build OF((
|
|
31 |
uIntf *, /* code lengths in bits */
|
|
32 |
uInt, /* number of codes */
|
|
33 |
uInt, /* number of "simple" codes */
|
|
34 |
const uIntf *, /* list of base values for non-simple codes */
|
|
35 |
const uIntf *, /* list of extra bits for non-simple codes */
|
|
36 |
inflate_huft * FAR*,/* result: starting table */
|
|
37 |
uIntf *, /* maximum lookup bits (returns actual) */
|
|
38 |
inflate_huft *, /* space for trees */
|
|
39 |
uInt *, /* hufts used in space */
|
|
40 |
uIntf * )); /* space for values */
|
|
41 |
|
|
42 |
/* Tables for deflate from PKZIP's appnote.txt. */
|
|
43 |
local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
|
|
44 |
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
|
45 |
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
|
46 |
/* see note #13 above about 258 */
|
|
47 |
local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
|
|
48 |
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
|
|
49 |
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
|
|
50 |
local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
|
|
51 |
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
|
52 |
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
|
53 |
8193, 12289, 16385, 24577};
|
|
54 |
local const uInt cpdext[30] = { /* Extra bits for distance codes */
|
|
55 |
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
|
|
56 |
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
|
|
57 |
12, 12, 13, 13};
|
|
58 |
|
|
59 |
/*
|
|
60 |
Huffman code decoding is performed using a multi-level table lookup.
|
|
61 |
The fastest way to decode is to simply build a lookup table whose
|
|
62 |
size is determined by the longest code. However, the time it takes
|
|
63 |
to build this table can also be a factor if the data being decoded
|
|
64 |
is not very long. The most common codes are necessarily the
|
|
65 |
shortest codes, so those codes dominate the decoding time, and hence
|
|
66 |
the speed. The idea is you can have a shorter table that decodes the
|
|
67 |
shorter, more probable codes, and then point to subsidiary tables for
|
|
68 |
the longer codes. The time it costs to decode the longer codes is
|
|
69 |
then traded against the time it takes to make longer tables.
|
|
70 |
|
|
71 |
This results of this trade are in the variables lbits and dbits
|
|
72 |
below. lbits is the number of bits the first level table for literal/
|
|
73 |
length codes can decode in one step, and dbits is the same thing for
|
|
74 |
the distance codes. Subsequent tables are also less than or equal to
|
|
75 |
those sizes. These values may be adjusted either when all of the
|
|
76 |
codes are shorter than that, in which case the longest code length in
|
|
77 |
bits is used, or when the shortest code is *longer* than the requested
|
|
78 |
table size, in which case the length of the shortest code in bits is
|
|
79 |
used.
|
|
80 |
|
|
81 |
There are two different values for the two tables, since they code a
|
|
82 |
different number of possibilities each. The literal/length table
|
|
83 |
codes 286 possible values, or in a flat code, a little over eight
|
|
84 |
bits. The distance table codes 30 possible values, or a little less
|
|
85 |
than five bits, flat. The optimum values for speed end up being
|
|
86 |
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
|
|
87 |
The optimum values may differ though from machine to machine, and
|
|
88 |
possibly even between compilers. Your mileage may vary.
|
|
89 |
*/
|
|
90 |
|
|
91 |
|
|
92 |
/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
|
|
93 |
#define BMAX 15 /* maximum bit length of any code */
|
|
94 |
|
|
95 |
local int huft_build( /* b, n, s, d, e, t, m, hp, hn, v) */
|
|
96 |
uIntf *b, /* code lengths in bits (all assumed <= BMAX) */
|
|
97 |
uInt n, /* number of codes (assumed <= 288) */
|
|
98 |
uInt s, /* number of simple-valued codes (0..s-1) */
|
|
99 |
const uIntf *d, /* list of base values for non-simple codes */
|
|
100 |
const uIntf *e, /* list of extra bits for non-simple codes */
|
|
101 |
inflate_huft * FAR *t, /* result: starting table */
|
|
102 |
uIntf *m, /* maximum lookup bits, returns actual */
|
|
103 |
inflate_huft *hp, /* space for trees */
|
|
104 |
uInt *hn, /* hufts used in space */
|
|
105 |
uIntf *v /* working area: values in order of bit length */
|
|
106 |
/* Given a list of code lengths and a maximum table size, make a set of
|
|
107 |
tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
|
|
108 |
if the given code set is incomplete (the tables are still built in this
|
|
109 |
case), or Z_DATA_ERROR if the input is invalid. */
|
|
110 |
)
|
|
111 |
{
|
|
112 |
|
|
113 |
uInt a; /* counter for codes of length k */
|
|
114 |
uInt c[BMAX+1]; /* bit length count table */
|
|
115 |
uInt f; /* i repeats in table every f entries */
|
|
116 |
int g; /* maximum code length */
|
|
117 |
int h; /* table level */
|
|
118 |
register uInt i; /* counter, current code */
|
|
119 |
register uInt j; /* counter */
|
|
120 |
register int k; /* number of bits in current code */
|
|
121 |
int l; /* bits per table (returned in m) */
|
|
122 |
uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */
|
|
123 |
register uIntf *p; /* pointer into c[], b[], or v[] */
|
|
124 |
inflate_huft *q; /* points to current table */
|
|
125 |
struct inflate_huft_s r; /* table entry for structure assignment */
|
|
126 |
inflate_huft *u[BMAX]; /* table stack */
|
|
127 |
register int w; /* bits before this table == (l * h) */
|
|
128 |
uInt x[BMAX+1]; /* bit offsets, then code stack */
|
|
129 |
uIntf *xp; /* pointer into x */
|
|
130 |
int y; /* number of dummy codes added */
|
|
131 |
uInt z; /* number of entries in current table */
|
|
132 |
|
|
133 |
|
|
134 |
/* Make compiler happy */
|
|
135 |
r.base = 0;
|
|
136 |
|
|
137 |
/* Generate counts for each bit length */
|
|
138 |
p = c;
|
|
139 |
#define C0 *p++ = 0;
|
|
140 |
#define C2 C0 C0 C0 C0
|
|
141 |
#define C4 C2 C2 C2 C2
|
|
142 |
C4 /* clear c[]--assume BMAX+1 is 16 */
|
|
143 |
p = b; i = n;
|
|
144 |
do {
|
|
145 |
c[*p++]++; /* assume all entries <= BMAX */
|
|
146 |
} while (--i);
|
|
147 |
if (c[0] == n) /* null input--all zero length codes */
|
|
148 |
{
|
|
149 |
*t = (inflate_huft *)Z_NULL;
|
|
150 |
*m = 0;
|
|
151 |
return Z_OK;
|
|
152 |
}
|
|
153 |
|
|
154 |
|
|
155 |
/* Find minimum and maximum length, bound *m by those */
|
|
156 |
l = *m;
|
|
157 |
for (j = 1; j <= BMAX; j++)
|
|
158 |
if (c[j])
|
|
159 |
break;
|
|
160 |
k = j; /* minimum code length */
|
|
161 |
if ((uInt)l < j)
|
|
162 |
l = j;
|
|
163 |
for (i = BMAX; i; i--)
|
|
164 |
if (c[i])
|
|
165 |
break;
|
|
166 |
g = i; /* maximum code length */
|
|
167 |
if ((uInt)l > i)
|
|
168 |
l = i;
|
|
169 |
*m = l;
|
|
170 |
|
|
171 |
|
|
172 |
/* Adjust last length count to fill out codes, if needed */
|
|
173 |
for (y = 1 << j; j < i; j++, y <<= 1)
|
|
174 |
if ((y -= c[j]) < 0)
|
|
175 |
return Z_DATA_ERROR;
|
|
176 |
if ((y -= c[i]) < 0)
|
|
177 |
return Z_DATA_ERROR;
|
|
178 |
c[i] += y;
|
|
179 |
|
|
180 |
|
|
181 |
/* Generate starting offsets into the value table for each length */
|
|
182 |
x[1] = j = 0;
|
|
183 |
p = c + 1; xp = x + 2;
|
|
184 |
while (--i) { /* note that i == g from above */
|
|
185 |
*xp++ = (j += *p++);
|
|
186 |
}
|
|
187 |
|
|
188 |
|
|
189 |
/* Make a table of values in order of bit lengths */
|
|
190 |
p = b; i = 0;
|
|
191 |
do {
|
|
192 |
if ((j = *p++) != 0)
|
|
193 |
v[x[j]++] = i;
|
|
194 |
} while (++i < n);
|
|
195 |
n = x[g]; /* set n to length of v */
|
|
196 |
|
|
197 |
|
|
198 |
/* Generate the Huffman codes and for each, make the table entries */
|
|
199 |
x[0] = i = 0; /* first Huffman code is zero */
|
|
200 |
p = v; /* grab values in bit order */
|
|
201 |
h = -1; /* no tables yet--level -1 */
|
|
202 |
w = -l; /* bits decoded == (l * h) */
|
|
203 |
u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
|
|
204 |
q = (inflate_huft *)Z_NULL; /* ditto */
|
|
205 |
z = 0; /* ditto */
|
|
206 |
|
|
207 |
/* go through the bit lengths (k already is bits in shortest code) */
|
|
208 |
for (; k <= g; k++)
|
|
209 |
{
|
|
210 |
a = c[k];
|
|
211 |
while (a--)
|
|
212 |
{
|
|
213 |
/* here i is the Huffman code of length k bits for value *p */
|
|
214 |
/* make tables up to required level */
|
|
215 |
while (k > w + l)
|
|
216 |
{
|
|
217 |
h++;
|
|
218 |
w += l; /* previous table always l bits */
|
|
219 |
|
|
220 |
/* compute minimum size table less than or equal to l bits */
|
|
221 |
z = g - w;
|
|
222 |
z = z > (uInt)l ? (uInt)l : z; /* table size upper limit */
|
|
223 |
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
|
|
224 |
{ /* too few codes for k-w bit table */
|
|
225 |
f -= a + 1; /* deduct codes from patterns left */
|
|
226 |
xp = c + k;
|
|
227 |
if (j < z)
|
|
228 |
while (++j < z) /* try smaller tables up to z bits */
|
|
229 |
{
|
|
230 |
if ((f <<= 1) <= *++xp)
|
|
231 |
break; /* enough codes to use up j bits */
|
|
232 |
f -= *xp; /* else deduct codes from patterns */
|
|
233 |
}
|
|
234 |
}
|
|
235 |
z = 1 << j; /* table entries for j-bit table */
|
|
236 |
|
|
237 |
/* allocate new table */
|
|
238 |
if (*hn + z > MANY) /* (note: doesn't matter for fixed) */
|
|
239 |
return Z_DATA_ERROR; /* overflow of MANY */
|
|
240 |
u[h] = q = hp + *hn;
|
|
241 |
*hn += z;
|
|
242 |
|
|
243 |
/* connect to last table, if there is one */
|
|
244 |
if (h)
|
|
245 |
{
|
|
246 |
x[h] = i; /* save pattern for backing up */
|
|
247 |
r.bits = (Byte)l; /* bits to dump before this table */
|
|
248 |
r.exop = (Byte)j; /* bits in this table */
|
|
249 |
j = i >> (w - l);
|
|
250 |
r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
|
|
251 |
u[h-1][j] = r; /* connect to last table */
|
|
252 |
}
|
|
253 |
else
|
|
254 |
*t = q; /* first table is returned result */
|
|
255 |
}
|
|
256 |
|
|
257 |
/* set up table entry in r */
|
|
258 |
r.bits = (Byte)(k - w);
|
|
259 |
if (p >= v + n)
|
|
260 |
r.exop = 128 + 64; /* out of values--invalid code */
|
|
261 |
else if (*p < s)
|
|
262 |
{
|
|
263 |
r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
|
|
264 |
r.base = *p++; /* simple code is just the value */
|
|
265 |
}
|
|
266 |
else
|
|
267 |
{
|
|
268 |
r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
|
|
269 |
r.base = d[*p++ - s];
|
|
270 |
}
|
|
271 |
|
|
272 |
/* fill code-like entries with r */
|
|
273 |
f = 1 << (k - w);
|
|
274 |
for (j = i >> w; j < z; j += f)
|
|
275 |
q[j] = r;
|
|
276 |
|
|
277 |
/* backwards increment the k-bit code i */
|
|
278 |
for (j = 1 << (k - 1); i & j; j >>= 1)
|
|
279 |
i ^= j;
|
|
280 |
i ^= j;
|
|
281 |
|
|
282 |
/* backup over finished tables */
|
|
283 |
mask = (1 << w) - 1; /* needed on HP, cc -O bug */
|
|
284 |
while ((i & mask) != x[h])
|
|
285 |
{
|
|
286 |
h--; /* don't need to update q */
|
|
287 |
w -= l;
|
|
288 |
mask = (1 << w) - 1;
|
|
289 |
}
|
|
290 |
}
|
|
291 |
}
|
|
292 |
|
|
293 |
|
|
294 |
/* Return Z_BUF_ERROR if we were given an incomplete table */
|
|
295 |
return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
|
|
296 |
}
|
|
297 |
|
|
298 |
|
|
299 |
local int inflate_trees_bits( /* c, bb, tb, hp, z) */
|
|
300 |
uIntf *c, /* 19 code lengths */
|
|
301 |
uIntf *bb, /* bits tree desired/actual depth */
|
|
302 |
inflate_huft * FAR *tb, /* bits tree result */
|
|
303 |
inflate_huft *hp, /* space for trees */
|
|
304 |
z_streamp z /* for messages */
|
|
305 |
)
|
|
306 |
{
|
|
307 |
int r;
|
|
308 |
uInt hn = 0; /* hufts used in space */
|
|
309 |
uIntf *v; /* work area for huft_build */
|
|
310 |
|
|
311 |
if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
|
|
312 |
return Z_MEM_ERROR;
|
|
313 |
r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
|
|
314 |
tb, bb, hp, &hn, v);
|
|
315 |
if (r == Z_DATA_ERROR)
|
|
316 |
z->msg = (char*)"oversubscribed dynamic bit lengths tree";
|
|
317 |
else if (r == Z_BUF_ERROR || *bb == 0)
|
|
318 |
{
|
|
319 |
z->msg = (char*)"incomplete dynamic bit lengths tree";
|
|
320 |
r = Z_DATA_ERROR;
|
|
321 |
}
|
|
322 |
ZFREE(z, v);
|
|
323 |
return r;
|
|
324 |
}
|
|
325 |
|
|
326 |
|
|
327 |
local int inflate_trees_dynamic( /* nl, nd, c, bl, bd, tl, td, hp, z) */
|
|
328 |
uInt nl, /* number of literal/length codes */
|
|
329 |
uInt nd, /* number of distance codes */
|
|
330 |
uIntf *c, /* that many (total) code lengths */
|
|
331 |
uIntf *bl, /* literal desired/actual bit depth */
|
|
332 |
uIntf *bd, /* distance desired/actual bit depth */
|
|
333 |
inflate_huft * FAR *tl, /* literal/length tree result */
|
|
334 |
inflate_huft * FAR *td, /* distance tree result */
|
|
335 |
inflate_huft *hp, /* space for trees */
|
|
336 |
z_streamp z /* for messages */
|
|
337 |
)
|
|
338 |
{
|
|
339 |
int r;
|
|
340 |
uInt hn = 0; /* hufts used in space */
|
|
341 |
uIntf *v; /* work area for huft_build */
|
|
342 |
|
|
343 |
/* allocate work area */
|
|
344 |
if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
|
|
345 |
return Z_MEM_ERROR;
|
|
346 |
|
|
347 |
/* build literal/length tree */
|
|
348 |
r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
|
|
349 |
if (r != Z_OK || *bl == 0)
|
|
350 |
{
|
|
351 |
if (r == Z_DATA_ERROR)
|
|
352 |
z->msg = (char*)"oversubscribed literal/length tree";
|
|
353 |
else if (r != Z_MEM_ERROR)
|
|
354 |
{
|
|
355 |
z->msg = (char*)"incomplete literal/length tree";
|
|
356 |
r = Z_DATA_ERROR;
|
|
357 |
}
|
|
358 |
ZFREE(z, v);
|
|
359 |
return r;
|
|
360 |
}
|
|
361 |
|
|
362 |
/* build distance tree */
|
|
363 |
r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
|
|
364 |
if (r != Z_OK || (*bd == 0 && nl > 257))
|
|
365 |
{
|
|
366 |
if (r == Z_DATA_ERROR)
|
|
367 |
z->msg = (char*)"oversubscribed distance tree";
|
|
368 |
else if (r == Z_BUF_ERROR) {
|
|
369 |
#if 0
|
|
370 |
{
|
|
371 |
#endif
|
|
372 |
#ifdef PKZIP_BUG_WORKAROUND
|
|
373 |
r = Z_OK;
|
|
374 |
}
|
|
375 |
#else
|
|
376 |
z->msg = (char*)"incomplete distance tree";
|
|
377 |
r = Z_DATA_ERROR;
|
|
378 |
}
|
|
379 |
else if (r != Z_MEM_ERROR)
|
|
380 |
{
|
|
381 |
z->msg = (char*)"empty distance tree with lengths";
|
|
382 |
r = Z_DATA_ERROR;
|
|
383 |
}
|
|
384 |
ZFREE(z, v);
|
|
385 |
return r;
|
|
386 |
#endif
|
|
387 |
}
|
|
388 |
|
|
389 |
/* done */
|
|
390 |
ZFREE(z, v);
|
|
391 |
return Z_OK;
|
|
392 |
}
|
|
393 |
|
|
394 |
|
|
395 |
/* build fixed tables only once--keep them here */
|
|
396 |
#ifdef BUILDFIXED
|
|
397 |
local int fixed_built = 0;
|
|
398 |
#define FIXEDH 544 /* number of hufts used by fixed tables */
|
|
399 |
local inflate_huft fixed_mem[FIXEDH];
|
|
400 |
local uInt fixed_bl;
|
|
401 |
local uInt fixed_bd;
|
|
402 |
local inflate_huft *fixed_tl;
|
|
403 |
local inflate_huft *fixed_td;
|
|
404 |
#else
|
|
405 |
#include "inffixed.h"
|
|
406 |
#endif
|
|
407 |
|
|
408 |
|
|
409 |
local int inflate_trees_fixed( /* bl, bd, tl, td, z) */
|
|
410 |
uIntf *bl, /* literal desired/actual bit depth */
|
|
411 |
uIntf *bd, /* distance desired/actual bit depth */
|
|
412 |
const inflate_huft * FAR *tl, /* literal/length tree result */
|
|
413 |
const inflate_huft * FAR *td, /* distance tree result */
|
|
414 |
z_streamp z /* for memory allocation */
|
|
415 |
)
|
|
416 |
{
|
|
417 |
#ifdef BUILDFIXED
|
|
418 |
/* build fixed tables if not already */
|
|
419 |
if (!fixed_built)
|
|
420 |
{
|
|
421 |
int k; /* temporary variable */
|
|
422 |
uInt f = 0; /* number of hufts used in fixed_mem */
|
|
423 |
uIntf *c; /* length list for huft_build */
|
|
424 |
uIntf *v; /* work area for huft_build */
|
|
425 |
|
|
426 |
/* allocate memory */
|
|
427 |
if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
|
|
428 |
return Z_MEM_ERROR;
|
|
429 |
if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
|
|
430 |
{
|
|
431 |
ZFREE(z, c);
|
|
432 |
return Z_MEM_ERROR;
|
|
433 |
}
|
|
434 |
|
|
435 |
/* literal table */
|
|
436 |
for (k = 0; k < 144; k++)
|
|
437 |
c[k] = 8;
|
|
438 |
for (; k < 256; k++)
|
|
439 |
c[k] = 9;
|
|
440 |
for (; k < 280; k++)
|
|
441 |
c[k] = 7;
|
|
442 |
for (; k < 288; k++)
|
|
443 |
c[k] = 8;
|
|
444 |
fixed_bl = 9;
|
|
445 |
huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
|
|
446 |
fixed_mem, &f, v);
|
|
447 |
|
|
448 |
/* distance table */
|
|
449 |
for (k = 0; k < 30; k++)
|
|
450 |
c[k] = 5;
|
|
451 |
fixed_bd = 5;
|
|
452 |
huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
|
|
453 |
fixed_mem, &f, v);
|
|
454 |
|
|
455 |
/* done */
|
|
456 |
ZFREE(z, v);
|
|
457 |
ZFREE(z, c);
|
|
458 |
fixed_built = 1;
|
|
459 |
}
|
|
460 |
#else
|
|
461 |
FT_UNUSED(z);
|
|
462 |
#endif
|
|
463 |
*bl = fixed_bl;
|
|
464 |
*bd = fixed_bd;
|
|
465 |
*tl = fixed_tl;
|
|
466 |
*td = fixed_td;
|
|
467 |
return Z_OK;
|
|
468 |
}
|