5172
|
1 |
/***************************************************************************/
|
|
2 |
/* */
|
|
3 |
/* ftcalc.c */
|
|
4 |
/* */
|
|
5 |
/* Arithmetic computations (body). */
|
|
6 |
/* */
|
|
7 |
/* Copyright 1996-2001, 2002, 2003, 2004, 2005, 2006, 2008 by */
|
|
8 |
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
9 |
/* */
|
|
10 |
/* This file is part of the FreeType project, and may only be used, */
|
|
11 |
/* modified, and distributed under the terms of the FreeType project */
|
|
12 |
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
13 |
/* this file you indicate that you have read the license and */
|
|
14 |
/* understand and accept it fully. */
|
|
15 |
/* */
|
|
16 |
/***************************************************************************/
|
|
17 |
|
|
18 |
/*************************************************************************/
|
|
19 |
/* */
|
|
20 |
/* Support for 1-complement arithmetic has been totally dropped in this */
|
|
21 |
/* release. You can still write your own code if you need it. */
|
|
22 |
/* */
|
|
23 |
/*************************************************************************/
|
|
24 |
|
|
25 |
/*************************************************************************/
|
|
26 |
/* */
|
|
27 |
/* Implementing basic computation routines. */
|
|
28 |
/* */
|
|
29 |
/* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(), */
|
|
30 |
/* and FT_FloorFix() are declared in freetype.h. */
|
|
31 |
/* */
|
|
32 |
/*************************************************************************/
|
|
33 |
|
|
34 |
|
|
35 |
#include <ft2build.h>
|
|
36 |
#include FT_GLYPH_H
|
|
37 |
#include FT_INTERNAL_CALC_H
|
|
38 |
#include FT_INTERNAL_DEBUG_H
|
|
39 |
#include FT_INTERNAL_OBJECTS_H
|
|
40 |
|
|
41 |
#ifdef FT_MULFIX_INLINED
|
|
42 |
#undef FT_MulFix
|
|
43 |
#endif
|
|
44 |
|
|
45 |
/* we need to define a 64-bits data type here */
|
|
46 |
|
|
47 |
#ifdef FT_LONG64
|
|
48 |
|
|
49 |
typedef FT_INT64 FT_Int64;
|
|
50 |
|
|
51 |
#else
|
|
52 |
|
|
53 |
typedef struct FT_Int64_
|
|
54 |
{
|
|
55 |
FT_UInt32 lo;
|
|
56 |
FT_UInt32 hi;
|
|
57 |
|
|
58 |
} FT_Int64;
|
|
59 |
|
|
60 |
#endif /* FT_LONG64 */
|
|
61 |
|
|
62 |
|
|
63 |
/*************************************************************************/
|
|
64 |
/* */
|
|
65 |
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
|
|
66 |
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
|
|
67 |
/* messages during execution. */
|
|
68 |
/* */
|
|
69 |
#undef FT_COMPONENT
|
|
70 |
#define FT_COMPONENT trace_calc
|
|
71 |
|
|
72 |
|
|
73 |
/* The following three functions are available regardless of whether */
|
|
74 |
/* FT_LONG64 is defined. */
|
|
75 |
|
|
76 |
/* documentation is in freetype.h */
|
|
77 |
|
|
78 |
FT_EXPORT_DEF( FT_Fixed )
|
|
79 |
FT_RoundFix( FT_Fixed a )
|
|
80 |
{
|
|
81 |
return ( a >= 0 ) ? ( a + 0x8000L ) & ~0xFFFFL
|
|
82 |
: -((-a + 0x8000L ) & ~0xFFFFL );
|
|
83 |
}
|
|
84 |
|
|
85 |
|
|
86 |
/* documentation is in freetype.h */
|
|
87 |
|
|
88 |
FT_EXPORT_DEF( FT_Fixed )
|
|
89 |
FT_CeilFix( FT_Fixed a )
|
|
90 |
{
|
|
91 |
return ( a >= 0 ) ? ( a + 0xFFFFL ) & ~0xFFFFL
|
|
92 |
: -((-a + 0xFFFFL ) & ~0xFFFFL );
|
|
93 |
}
|
|
94 |
|
|
95 |
|
|
96 |
/* documentation is in freetype.h */
|
|
97 |
|
|
98 |
FT_EXPORT_DEF( FT_Fixed )
|
|
99 |
FT_FloorFix( FT_Fixed a )
|
|
100 |
{
|
|
101 |
return ( a >= 0 ) ? a & ~0xFFFFL
|
|
102 |
: -((-a) & ~0xFFFFL );
|
|
103 |
}
|
|
104 |
|
|
105 |
|
|
106 |
#ifdef FT_CONFIG_OPTION_OLD_INTERNALS
|
|
107 |
|
|
108 |
/* documentation is in ftcalc.h */
|
|
109 |
|
|
110 |
FT_EXPORT_DEF( FT_Int32 )
|
|
111 |
FT_Sqrt32( FT_Int32 x )
|
|
112 |
{
|
|
113 |
FT_UInt32 val, root, newroot, mask;
|
|
114 |
|
|
115 |
|
|
116 |
root = 0;
|
|
117 |
mask = (FT_UInt32)0x40000000UL;
|
|
118 |
val = (FT_UInt32)x;
|
|
119 |
|
|
120 |
do
|
|
121 |
{
|
|
122 |
newroot = root + mask;
|
|
123 |
if ( newroot <= val )
|
|
124 |
{
|
|
125 |
val -= newroot;
|
|
126 |
root = newroot + mask;
|
|
127 |
}
|
|
128 |
|
|
129 |
root >>= 1;
|
|
130 |
mask >>= 2;
|
|
131 |
|
|
132 |
} while ( mask != 0 );
|
|
133 |
|
|
134 |
return root;
|
|
135 |
}
|
|
136 |
|
|
137 |
#endif /* FT_CONFIG_OPTION_OLD_INTERNALS */
|
|
138 |
|
|
139 |
|
|
140 |
#ifdef FT_LONG64
|
|
141 |
|
|
142 |
|
|
143 |
/* documentation is in freetype.h */
|
|
144 |
|
|
145 |
FT_EXPORT_DEF( FT_Long )
|
|
146 |
FT_MulDiv( FT_Long a,
|
|
147 |
FT_Long b,
|
|
148 |
FT_Long c )
|
|
149 |
{
|
|
150 |
FT_Int s;
|
|
151 |
FT_Long d;
|
|
152 |
|
|
153 |
|
|
154 |
s = 1;
|
|
155 |
if ( a < 0 ) { a = -a; s = -1; }
|
|
156 |
if ( b < 0 ) { b = -b; s = -s; }
|
|
157 |
if ( c < 0 ) { c = -c; s = -s; }
|
|
158 |
|
|
159 |
d = (FT_Long)( c > 0 ? ( (FT_Int64)a * b + ( c >> 1 ) ) / c
|
|
160 |
: 0x7FFFFFFFL );
|
|
161 |
|
|
162 |
return ( s > 0 ) ? d : -d;
|
|
163 |
}
|
|
164 |
|
|
165 |
|
|
166 |
#ifdef TT_USE_BYTECODE_INTERPRETER
|
|
167 |
|
|
168 |
/* documentation is in ftcalc.h */
|
|
169 |
|
|
170 |
FT_BASE_DEF( FT_Long )
|
|
171 |
FT_MulDiv_No_Round( FT_Long a,
|
|
172 |
FT_Long b,
|
|
173 |
FT_Long c )
|
|
174 |
{
|
|
175 |
FT_Int s;
|
|
176 |
FT_Long d;
|
|
177 |
|
|
178 |
|
|
179 |
s = 1;
|
|
180 |
if ( a < 0 ) { a = -a; s = -1; }
|
|
181 |
if ( b < 0 ) { b = -b; s = -s; }
|
|
182 |
if ( c < 0 ) { c = -c; s = -s; }
|
|
183 |
|
|
184 |
d = (FT_Long)( c > 0 ? (FT_Int64)a * b / c
|
|
185 |
: 0x7FFFFFFFL );
|
|
186 |
|
|
187 |
return ( s > 0 ) ? d : -d;
|
|
188 |
}
|
|
189 |
|
|
190 |
#endif /* TT_USE_BYTECODE_INTERPRETER */
|
|
191 |
|
|
192 |
|
|
193 |
/* documentation is in freetype.h */
|
|
194 |
|
|
195 |
FT_EXPORT_DEF( FT_Long )
|
|
196 |
FT_MulFix( FT_Long a,
|
|
197 |
FT_Long b )
|
|
198 |
{
|
|
199 |
#ifdef FT_MULFIX_ASSEMBLER
|
|
200 |
|
|
201 |
return FT_MULFIX_ASSEMBLER( a, b );
|
|
202 |
|
|
203 |
#else
|
|
204 |
|
|
205 |
FT_Int s = 1;
|
|
206 |
FT_Long c;
|
|
207 |
|
|
208 |
|
|
209 |
if ( a < 0 )
|
|
210 |
{
|
|
211 |
a = -a;
|
|
212 |
s = -1;
|
|
213 |
}
|
|
214 |
|
|
215 |
if ( b < 0 )
|
|
216 |
{
|
|
217 |
b = -b;
|
|
218 |
s = -s;
|
|
219 |
}
|
|
220 |
|
|
221 |
c = (FT_Long)( ( (FT_Int64)a * b + 0x8000L ) >> 16 );
|
|
222 |
|
|
223 |
return ( s > 0 ) ? c : -c;
|
|
224 |
|
|
225 |
#endif /* FT_MULFIX_ASSEMBLER */
|
|
226 |
}
|
|
227 |
|
|
228 |
|
|
229 |
/* documentation is in freetype.h */
|
|
230 |
|
|
231 |
FT_EXPORT_DEF( FT_Long )
|
|
232 |
FT_DivFix( FT_Long a,
|
|
233 |
FT_Long b )
|
|
234 |
{
|
|
235 |
FT_Int32 s;
|
|
236 |
FT_UInt32 q;
|
|
237 |
|
|
238 |
s = 1;
|
|
239 |
if ( a < 0 ) { a = -a; s = -1; }
|
|
240 |
if ( b < 0 ) { b = -b; s = -s; }
|
|
241 |
|
|
242 |
if ( b == 0 )
|
|
243 |
/* check for division by 0 */
|
|
244 |
q = 0x7FFFFFFFL;
|
|
245 |
else
|
|
246 |
/* compute result directly */
|
|
247 |
q = (FT_UInt32)( ( ( (FT_Int64)a << 16 ) + ( b >> 1 ) ) / b );
|
|
248 |
|
|
249 |
return ( s < 0 ? -(FT_Long)q : (FT_Long)q );
|
|
250 |
}
|
|
251 |
|
|
252 |
|
|
253 |
#else /* !FT_LONG64 */
|
|
254 |
|
|
255 |
|
|
256 |
static void
|
|
257 |
ft_multo64( FT_UInt32 x,
|
|
258 |
FT_UInt32 y,
|
|
259 |
FT_Int64 *z )
|
|
260 |
{
|
|
261 |
FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2;
|
|
262 |
|
|
263 |
|
|
264 |
lo1 = x & 0x0000FFFFU; hi1 = x >> 16;
|
|
265 |
lo2 = y & 0x0000FFFFU; hi2 = y >> 16;
|
|
266 |
|
|
267 |
lo = lo1 * lo2;
|
|
268 |
i1 = lo1 * hi2;
|
|
269 |
i2 = lo2 * hi1;
|
|
270 |
hi = hi1 * hi2;
|
|
271 |
|
|
272 |
/* Check carry overflow of i1 + i2 */
|
|
273 |
i1 += i2;
|
|
274 |
hi += (FT_UInt32)( i1 < i2 ) << 16;
|
|
275 |
|
|
276 |
hi += i1 >> 16;
|
|
277 |
i1 = i1 << 16;
|
|
278 |
|
|
279 |
/* Check carry overflow of i1 + lo */
|
|
280 |
lo += i1;
|
|
281 |
hi += ( lo < i1 );
|
|
282 |
|
|
283 |
z->lo = lo;
|
|
284 |
z->hi = hi;
|
|
285 |
}
|
|
286 |
|
|
287 |
|
|
288 |
static FT_UInt32
|
|
289 |
ft_div64by32( FT_UInt32 hi,
|
|
290 |
FT_UInt32 lo,
|
|
291 |
FT_UInt32 y )
|
|
292 |
{
|
|
293 |
FT_UInt32 r, q;
|
|
294 |
FT_Int i;
|
|
295 |
|
|
296 |
|
|
297 |
q = 0;
|
|
298 |
r = hi;
|
|
299 |
|
|
300 |
if ( r >= y )
|
|
301 |
return (FT_UInt32)0x7FFFFFFFL;
|
|
302 |
|
|
303 |
i = 32;
|
|
304 |
do
|
|
305 |
{
|
|
306 |
r <<= 1;
|
|
307 |
q <<= 1;
|
|
308 |
r |= lo >> 31;
|
|
309 |
|
|
310 |
if ( r >= (FT_UInt32)y )
|
|
311 |
{
|
|
312 |
r -= y;
|
|
313 |
q |= 1;
|
|
314 |
}
|
|
315 |
lo <<= 1;
|
|
316 |
} while ( --i );
|
|
317 |
|
|
318 |
return q;
|
|
319 |
}
|
|
320 |
|
|
321 |
|
|
322 |
static void
|
|
323 |
FT_Add64( FT_Int64* x,
|
|
324 |
FT_Int64* y,
|
|
325 |
FT_Int64 *z )
|
|
326 |
{
|
|
327 |
register FT_UInt32 lo, hi;
|
|
328 |
|
|
329 |
|
|
330 |
lo = x->lo + y->lo;
|
|
331 |
hi = x->hi + y->hi + ( lo < x->lo );
|
|
332 |
|
|
333 |
z->lo = lo;
|
|
334 |
z->hi = hi;
|
|
335 |
}
|
|
336 |
|
|
337 |
|
|
338 |
/* documentation is in freetype.h */
|
|
339 |
|
|
340 |
/* The FT_MulDiv function has been optimized thanks to ideas from */
|
|
341 |
/* Graham Asher. The trick is to optimize computation when everything */
|
|
342 |
/* fits within 32-bits (a rather common case). */
|
|
343 |
/* */
|
|
344 |
/* we compute 'a*b+c/2', then divide it by 'c'. (positive values) */
|
|
345 |
/* */
|
|
346 |
/* 46340 is FLOOR(SQRT(2^31-1)). */
|
|
347 |
/* */
|
|
348 |
/* if ( a <= 46340 && b <= 46340 ) then ( a*b <= 0x7FFEA810 ) */
|
|
349 |
/* */
|
|
350 |
/* 0x7FFFFFFF - 0x7FFEA810 = 0x157F0 */
|
|
351 |
/* */
|
|
352 |
/* if ( c < 0x157F0*2 ) then ( a*b+c/2 <= 0x7FFFFFFF ) */
|
|
353 |
/* */
|
|
354 |
/* and 2*0x157F0 = 176096 */
|
|
355 |
/* */
|
|
356 |
|
|
357 |
FT_EXPORT_DEF( FT_Long )
|
|
358 |
FT_MulDiv( FT_Long a,
|
|
359 |
FT_Long b,
|
|
360 |
FT_Long c )
|
|
361 |
{
|
|
362 |
long s;
|
|
363 |
|
|
364 |
|
|
365 |
/* XXX: this function does not allow 64-bit arguments */
|
|
366 |
if ( a == 0 || b == c )
|
|
367 |
return a;
|
|
368 |
|
|
369 |
s = a; a = FT_ABS( a );
|
|
370 |
s ^= b; b = FT_ABS( b );
|
|
371 |
s ^= c; c = FT_ABS( c );
|
|
372 |
|
|
373 |
if ( a <= 46340L && b <= 46340L && c <= 176095L && c > 0 )
|
|
374 |
a = ( a * b + ( c >> 1 ) ) / c;
|
|
375 |
|
|
376 |
else if ( c > 0 )
|
|
377 |
{
|
|
378 |
FT_Int64 temp, temp2;
|
|
379 |
|
|
380 |
|
|
381 |
ft_multo64( (FT_Int32)a, (FT_Int32)b, &temp );
|
|
382 |
|
|
383 |
temp2.hi = 0;
|
|
384 |
temp2.lo = (FT_UInt32)(c >> 1);
|
|
385 |
FT_Add64( &temp, &temp2, &temp );
|
|
386 |
a = ft_div64by32( temp.hi, temp.lo, (FT_Int32)c );
|
|
387 |
}
|
|
388 |
else
|
|
389 |
a = 0x7FFFFFFFL;
|
|
390 |
|
|
391 |
return ( s < 0 ? -a : a );
|
|
392 |
}
|
|
393 |
|
|
394 |
|
|
395 |
#ifdef TT_USE_BYTECODE_INTERPRETER
|
|
396 |
|
|
397 |
FT_BASE_DEF( FT_Long )
|
|
398 |
FT_MulDiv_No_Round( FT_Long a,
|
|
399 |
FT_Long b,
|
|
400 |
FT_Long c )
|
|
401 |
{
|
|
402 |
long s;
|
|
403 |
|
|
404 |
|
|
405 |
if ( a == 0 || b == c )
|
|
406 |
return a;
|
|
407 |
|
|
408 |
s = a; a = FT_ABS( a );
|
|
409 |
s ^= b; b = FT_ABS( b );
|
|
410 |
s ^= c; c = FT_ABS( c );
|
|
411 |
|
|
412 |
if ( a <= 46340L && b <= 46340L && c > 0 )
|
|
413 |
a = a * b / c;
|
|
414 |
|
|
415 |
else if ( c > 0 )
|
|
416 |
{
|
|
417 |
FT_Int64 temp;
|
|
418 |
|
|
419 |
|
|
420 |
ft_multo64( (FT_Int32)a, (FT_Int32)b, &temp );
|
|
421 |
a = ft_div64by32( temp.hi, temp.lo, (FT_Int32)c );
|
|
422 |
}
|
|
423 |
else
|
|
424 |
a = 0x7FFFFFFFL;
|
|
425 |
|
|
426 |
return ( s < 0 ? -a : a );
|
|
427 |
}
|
|
428 |
|
|
429 |
#endif /* TT_USE_BYTECODE_INTERPRETER */
|
|
430 |
|
|
431 |
|
|
432 |
/* documentation is in freetype.h */
|
|
433 |
|
|
434 |
FT_EXPORT_DEF( FT_Long )
|
|
435 |
FT_MulFix( FT_Long a,
|
|
436 |
FT_Long b )
|
|
437 |
{
|
|
438 |
#ifdef FT_MULFIX_ASSEMBLER
|
|
439 |
|
|
440 |
return FT_MULFIX_ASSEMBLER( a, b );
|
|
441 |
|
|
442 |
#elif 0
|
|
443 |
|
|
444 |
/*
|
|
445 |
* This code is nonportable. See comment below.
|
|
446 |
*
|
|
447 |
* However, on a platform where right-shift of a signed quantity fills
|
|
448 |
* the leftmost bits by copying the sign bit, it might be faster.
|
|
449 |
*/
|
|
450 |
|
|
451 |
FT_Long sa, sb;
|
|
452 |
FT_ULong ua, ub;
|
|
453 |
|
|
454 |
|
|
455 |
if ( a == 0 || b == 0x10000L )
|
|
456 |
return a;
|
|
457 |
|
|
458 |
/*
|
|
459 |
* This is a clever way of converting a signed number `a' into its
|
|
460 |
* absolute value (stored back into `a') and its sign. The sign is
|
|
461 |
* stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
|
|
462 |
* was negative. (Similarly for `b' and `sb').
|
|
463 |
*
|
|
464 |
* Unfortunately, it doesn't work (at least not portably).
|
|
465 |
*
|
|
466 |
* It makes the assumption that right-shift on a negative signed value
|
|
467 |
* fills the leftmost bits by copying the sign bit. This is wrong.
|
|
468 |
* According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
|
|
469 |
* the result of right-shift of a negative signed value is
|
|
470 |
* implementation-defined. At least one implementation fills the
|
|
471 |
* leftmost bits with 0s (i.e., it is exactly the same as an unsigned
|
|
472 |
* right shift). This means that when `a' is negative, `sa' ends up
|
|
473 |
* with the value 1 rather than -1. After that, everything else goes
|
|
474 |
* wrong.
|
|
475 |
*/
|
|
476 |
sa = ( a >> ( sizeof ( a ) * 8 - 1 ) );
|
|
477 |
a = ( a ^ sa ) - sa;
|
|
478 |
sb = ( b >> ( sizeof ( b ) * 8 - 1 ) );
|
|
479 |
b = ( b ^ sb ) - sb;
|
|
480 |
|
|
481 |
ua = (FT_ULong)a;
|
|
482 |
ub = (FT_ULong)b;
|
|
483 |
|
|
484 |
if ( ua <= 2048 && ub <= 1048576L )
|
|
485 |
ua = ( ua * ub + 0x8000U ) >> 16;
|
|
486 |
else
|
|
487 |
{
|
|
488 |
FT_ULong al = ua & 0xFFFFU;
|
|
489 |
|
|
490 |
|
|
491 |
ua = ( ua >> 16 ) * ub + al * ( ub >> 16 ) +
|
|
492 |
( ( al * ( ub & 0xFFFFU ) + 0x8000U ) >> 16 );
|
|
493 |
}
|
|
494 |
|
|
495 |
sa ^= sb,
|
|
496 |
ua = (FT_ULong)(( ua ^ sa ) - sa);
|
|
497 |
|
|
498 |
return (FT_Long)ua;
|
|
499 |
|
|
500 |
#else /* 0 */
|
|
501 |
|
|
502 |
FT_Long s;
|
|
503 |
FT_ULong ua, ub;
|
|
504 |
|
|
505 |
|
|
506 |
if ( a == 0 || b == 0x10000L )
|
|
507 |
return a;
|
|
508 |
|
|
509 |
s = a; a = FT_ABS( a );
|
|
510 |
s ^= b; b = FT_ABS( b );
|
|
511 |
|
|
512 |
ua = (FT_ULong)a;
|
|
513 |
ub = (FT_ULong)b;
|
|
514 |
|
|
515 |
if ( ua <= 2048 && ub <= 1048576L )
|
|
516 |
ua = ( ua * ub + 0x8000UL ) >> 16;
|
|
517 |
else
|
|
518 |
{
|
|
519 |
FT_ULong al = ua & 0xFFFFUL;
|
|
520 |
|
|
521 |
|
|
522 |
ua = ( ua >> 16 ) * ub + al * ( ub >> 16 ) +
|
|
523 |
( ( al * ( ub & 0xFFFFUL ) + 0x8000UL ) >> 16 );
|
|
524 |
}
|
|
525 |
|
|
526 |
return ( s < 0 ? -(FT_Long)ua : (FT_Long)ua );
|
|
527 |
|
|
528 |
#endif /* 0 */
|
|
529 |
|
|
530 |
}
|
|
531 |
|
|
532 |
|
|
533 |
/* documentation is in freetype.h */
|
|
534 |
|
|
535 |
FT_EXPORT_DEF( FT_Long )
|
|
536 |
FT_DivFix( FT_Long a,
|
|
537 |
FT_Long b )
|
|
538 |
{
|
|
539 |
FT_Int32 s;
|
|
540 |
FT_UInt32 q;
|
|
541 |
|
|
542 |
|
|
543 |
/* XXX: this function does not allow 64-bit arguments */
|
|
544 |
s = (FT_Int32)a; a = FT_ABS( a );
|
|
545 |
s ^= (FT_Int32)b; b = FT_ABS( b );
|
|
546 |
|
|
547 |
if ( b == 0 )
|
|
548 |
{
|
|
549 |
/* check for division by 0 */
|
|
550 |
q = (FT_UInt32)0x7FFFFFFFL;
|
|
551 |
}
|
|
552 |
else if ( ( a >> 16 ) == 0 )
|
|
553 |
{
|
|
554 |
/* compute result directly */
|
|
555 |
q = (FT_UInt32)( (a << 16) + (b >> 1) ) / (FT_UInt32)b;
|
|
556 |
}
|
|
557 |
else
|
|
558 |
{
|
|
559 |
/* we need more bits; we have to do it by hand */
|
|
560 |
FT_Int64 temp, temp2;
|
|
561 |
|
|
562 |
temp.hi = (FT_Int32) (a >> 16);
|
|
563 |
temp.lo = (FT_UInt32)(a << 16);
|
|
564 |
temp2.hi = 0;
|
|
565 |
temp2.lo = (FT_UInt32)( b >> 1 );
|
|
566 |
FT_Add64( &temp, &temp2, &temp );
|
|
567 |
q = ft_div64by32( temp.hi, temp.lo, (FT_Int32)b );
|
|
568 |
}
|
|
569 |
|
|
570 |
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
571 |
}
|
|
572 |
|
|
573 |
|
|
574 |
#if 0
|
|
575 |
|
|
576 |
/* documentation is in ftcalc.h */
|
|
577 |
|
|
578 |
FT_EXPORT_DEF( void )
|
|
579 |
FT_MulTo64( FT_Int32 x,
|
|
580 |
FT_Int32 y,
|
|
581 |
FT_Int64 *z )
|
|
582 |
{
|
|
583 |
FT_Int32 s;
|
|
584 |
|
|
585 |
|
|
586 |
s = x; x = FT_ABS( x );
|
|
587 |
s ^= y; y = FT_ABS( y );
|
|
588 |
|
|
589 |
ft_multo64( x, y, z );
|
|
590 |
|
|
591 |
if ( s < 0 )
|
|
592 |
{
|
|
593 |
z->lo = (FT_UInt32)-(FT_Int32)z->lo;
|
|
594 |
z->hi = ~z->hi + !( z->lo );
|
|
595 |
}
|
|
596 |
}
|
|
597 |
|
|
598 |
|
|
599 |
/* apparently, the second version of this code is not compiled correctly */
|
|
600 |
/* on Mac machines with the MPW C compiler.. tsk, tsk, tsk... */
|
|
601 |
|
|
602 |
#if 1
|
|
603 |
|
|
604 |
FT_EXPORT_DEF( FT_Int32 )
|
|
605 |
FT_Div64by32( FT_Int64* x,
|
|
606 |
FT_Int32 y )
|
|
607 |
{
|
|
608 |
FT_Int32 s;
|
|
609 |
FT_UInt32 q, r, i, lo;
|
|
610 |
|
|
611 |
|
|
612 |
s = x->hi;
|
|
613 |
if ( s < 0 )
|
|
614 |
{
|
|
615 |
x->lo = (FT_UInt32)-(FT_Int32)x->lo;
|
|
616 |
x->hi = ~x->hi + !x->lo;
|
|
617 |
}
|
|
618 |
s ^= y; y = FT_ABS( y );
|
|
619 |
|
|
620 |
/* Shortcut */
|
|
621 |
if ( x->hi == 0 )
|
|
622 |
{
|
|
623 |
if ( y > 0 )
|
|
624 |
q = x->lo / y;
|
|
625 |
else
|
|
626 |
q = 0x7FFFFFFFL;
|
|
627 |
|
|
628 |
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
629 |
}
|
|
630 |
|
|
631 |
r = x->hi;
|
|
632 |
lo = x->lo;
|
|
633 |
|
|
634 |
if ( r >= (FT_UInt32)y ) /* we know y is to be treated as unsigned here */
|
|
635 |
return ( s < 0 ? 0x80000001UL : 0x7FFFFFFFUL );
|
|
636 |
/* Return Max/Min Int32 if division overflow. */
|
|
637 |
/* This includes division by zero! */
|
|
638 |
q = 0;
|
|
639 |
for ( i = 0; i < 32; i++ )
|
|
640 |
{
|
|
641 |
r <<= 1;
|
|
642 |
q <<= 1;
|
|
643 |
r |= lo >> 31;
|
|
644 |
|
|
645 |
if ( r >= (FT_UInt32)y )
|
|
646 |
{
|
|
647 |
r -= y;
|
|
648 |
q |= 1;
|
|
649 |
}
|
|
650 |
lo <<= 1;
|
|
651 |
}
|
|
652 |
|
|
653 |
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
654 |
}
|
|
655 |
|
|
656 |
#else /* 0 */
|
|
657 |
|
|
658 |
FT_EXPORT_DEF( FT_Int32 )
|
|
659 |
FT_Div64by32( FT_Int64* x,
|
|
660 |
FT_Int32 y )
|
|
661 |
{
|
|
662 |
FT_Int32 s;
|
|
663 |
FT_UInt32 q;
|
|
664 |
|
|
665 |
|
|
666 |
s = x->hi;
|
|
667 |
if ( s < 0 )
|
|
668 |
{
|
|
669 |
x->lo = (FT_UInt32)-(FT_Int32)x->lo;
|
|
670 |
x->hi = ~x->hi + !x->lo;
|
|
671 |
}
|
|
672 |
s ^= y; y = FT_ABS( y );
|
|
673 |
|
|
674 |
/* Shortcut */
|
|
675 |
if ( x->hi == 0 )
|
|
676 |
{
|
|
677 |
if ( y > 0 )
|
|
678 |
q = ( x->lo + ( y >> 1 ) ) / y;
|
|
679 |
else
|
|
680 |
q = 0x7FFFFFFFL;
|
|
681 |
|
|
682 |
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
683 |
}
|
|
684 |
|
|
685 |
q = ft_div64by32( x->hi, x->lo, y );
|
|
686 |
|
|
687 |
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
688 |
}
|
|
689 |
|
|
690 |
#endif /* 0 */
|
|
691 |
|
|
692 |
#endif /* 0 */
|
|
693 |
|
|
694 |
|
|
695 |
#endif /* FT_LONG64 */
|
|
696 |
|
|
697 |
|
|
698 |
/* documentation is in ftglyph.h */
|
|
699 |
|
|
700 |
FT_EXPORT_DEF( void )
|
|
701 |
FT_Matrix_Multiply( const FT_Matrix* a,
|
|
702 |
FT_Matrix *b )
|
|
703 |
{
|
|
704 |
FT_Fixed xx, xy, yx, yy;
|
|
705 |
|
|
706 |
|
|
707 |
if ( !a || !b )
|
|
708 |
return;
|
|
709 |
|
|
710 |
xx = FT_MulFix( a->xx, b->xx ) + FT_MulFix( a->xy, b->yx );
|
|
711 |
xy = FT_MulFix( a->xx, b->xy ) + FT_MulFix( a->xy, b->yy );
|
|
712 |
yx = FT_MulFix( a->yx, b->xx ) + FT_MulFix( a->yy, b->yx );
|
|
713 |
yy = FT_MulFix( a->yx, b->xy ) + FT_MulFix( a->yy, b->yy );
|
|
714 |
|
|
715 |
b->xx = xx; b->xy = xy;
|
|
716 |
b->yx = yx; b->yy = yy;
|
|
717 |
}
|
|
718 |
|
|
719 |
|
|
720 |
/* documentation is in ftglyph.h */
|
|
721 |
|
|
722 |
FT_EXPORT_DEF( FT_Error )
|
|
723 |
FT_Matrix_Invert( FT_Matrix* matrix )
|
|
724 |
{
|
|
725 |
FT_Pos delta, xx, yy;
|
|
726 |
|
|
727 |
|
|
728 |
if ( !matrix )
|
|
729 |
return FT_Err_Invalid_Argument;
|
|
730 |
|
|
731 |
/* compute discriminant */
|
|
732 |
delta = FT_MulFix( matrix->xx, matrix->yy ) -
|
|
733 |
FT_MulFix( matrix->xy, matrix->yx );
|
|
734 |
|
|
735 |
if ( !delta )
|
|
736 |
return FT_Err_Invalid_Argument; /* matrix can't be inverted */
|
|
737 |
|
|
738 |
matrix->xy = - FT_DivFix( matrix->xy, delta );
|
|
739 |
matrix->yx = - FT_DivFix( matrix->yx, delta );
|
|
740 |
|
|
741 |
xx = matrix->xx;
|
|
742 |
yy = matrix->yy;
|
|
743 |
|
|
744 |
matrix->xx = FT_DivFix( yy, delta );
|
|
745 |
matrix->yy = FT_DivFix( xx, delta );
|
|
746 |
|
|
747 |
return FT_Err_Ok;
|
|
748 |
}
|
|
749 |
|
|
750 |
|
|
751 |
/* documentation is in ftcalc.h */
|
|
752 |
|
|
753 |
FT_BASE_DEF( void )
|
|
754 |
FT_Matrix_Multiply_Scaled( const FT_Matrix* a,
|
|
755 |
FT_Matrix *b,
|
|
756 |
FT_Long scaling )
|
|
757 |
{
|
|
758 |
FT_Fixed xx, xy, yx, yy;
|
|
759 |
|
|
760 |
FT_Long val = 0x10000L * scaling;
|
|
761 |
|
|
762 |
|
|
763 |
if ( !a || !b )
|
|
764 |
return;
|
|
765 |
|
|
766 |
xx = FT_MulDiv( a->xx, b->xx, val ) + FT_MulDiv( a->xy, b->yx, val );
|
|
767 |
xy = FT_MulDiv( a->xx, b->xy, val ) + FT_MulDiv( a->xy, b->yy, val );
|
|
768 |
yx = FT_MulDiv( a->yx, b->xx, val ) + FT_MulDiv( a->yy, b->yx, val );
|
|
769 |
yy = FT_MulDiv( a->yx, b->xy, val ) + FT_MulDiv( a->yy, b->yy, val );
|
|
770 |
|
|
771 |
b->xx = xx; b->xy = xy;
|
|
772 |
b->yx = yx; b->yy = yy;
|
|
773 |
}
|
|
774 |
|
|
775 |
|
|
776 |
/* documentation is in ftcalc.h */
|
|
777 |
|
|
778 |
FT_BASE_DEF( void )
|
|
779 |
FT_Vector_Transform_Scaled( FT_Vector* vector,
|
|
780 |
const FT_Matrix* matrix,
|
|
781 |
FT_Long scaling )
|
|
782 |
{
|
|
783 |
FT_Pos xz, yz;
|
|
784 |
|
|
785 |
FT_Long val = 0x10000L * scaling;
|
|
786 |
|
|
787 |
|
|
788 |
if ( !vector || !matrix )
|
|
789 |
return;
|
|
790 |
|
|
791 |
xz = FT_MulDiv( vector->x, matrix->xx, val ) +
|
|
792 |
FT_MulDiv( vector->y, matrix->xy, val );
|
|
793 |
|
|
794 |
yz = FT_MulDiv( vector->x, matrix->yx, val ) +
|
|
795 |
FT_MulDiv( vector->y, matrix->yy, val );
|
|
796 |
|
|
797 |
vector->x = xz;
|
|
798 |
vector->y = yz;
|
|
799 |
}
|
|
800 |
|
|
801 |
|
|
802 |
/* documentation is in ftcalc.h */
|
|
803 |
|
|
804 |
FT_BASE_DEF( FT_Int32 )
|
|
805 |
FT_SqrtFixed( FT_Int32 x )
|
|
806 |
{
|
|
807 |
FT_UInt32 root, rem_hi, rem_lo, test_div;
|
|
808 |
FT_Int count;
|
|
809 |
|
|
810 |
|
|
811 |
root = 0;
|
|
812 |
|
|
813 |
if ( x > 0 )
|
|
814 |
{
|
|
815 |
rem_hi = 0;
|
|
816 |
rem_lo = x;
|
|
817 |
count = 24;
|
|
818 |
do
|
|
819 |
{
|
|
820 |
rem_hi = ( rem_hi << 2 ) | ( rem_lo >> 30 );
|
|
821 |
rem_lo <<= 2;
|
|
822 |
root <<= 1;
|
|
823 |
test_div = ( root << 1 ) + 1;
|
|
824 |
|
|
825 |
if ( rem_hi >= test_div )
|
|
826 |
{
|
|
827 |
rem_hi -= test_div;
|
|
828 |
root += 1;
|
|
829 |
}
|
|
830 |
} while ( --count );
|
|
831 |
}
|
|
832 |
|
|
833 |
return (FT_Int32)root;
|
|
834 |
}
|
|
835 |
|
|
836 |
|
|
837 |
/* documentation is in ftcalc.h */
|
|
838 |
|
|
839 |
FT_BASE_DEF( FT_Int )
|
|
840 |
ft_corner_orientation( FT_Pos in_x,
|
|
841 |
FT_Pos in_y,
|
|
842 |
FT_Pos out_x,
|
|
843 |
FT_Pos out_y )
|
|
844 |
{
|
|
845 |
FT_Long result; /* avoid overflow on 16-bit system */
|
|
846 |
|
|
847 |
|
|
848 |
/* deal with the trivial cases quickly */
|
|
849 |
if ( in_y == 0 )
|
|
850 |
{
|
|
851 |
if ( in_x >= 0 )
|
|
852 |
result = out_y;
|
|
853 |
else
|
|
854 |
result = -out_y;
|
|
855 |
}
|
|
856 |
else if ( in_x == 0 )
|
|
857 |
{
|
|
858 |
if ( in_y >= 0 )
|
|
859 |
result = -out_x;
|
|
860 |
else
|
|
861 |
result = out_x;
|
|
862 |
}
|
|
863 |
else if ( out_y == 0 )
|
|
864 |
{
|
|
865 |
if ( out_x >= 0 )
|
|
866 |
result = in_y;
|
|
867 |
else
|
|
868 |
result = -in_y;
|
|
869 |
}
|
|
870 |
else if ( out_x == 0 )
|
|
871 |
{
|
|
872 |
if ( out_y >= 0 )
|
|
873 |
result = -in_x;
|
|
874 |
else
|
|
875 |
result = in_x;
|
|
876 |
}
|
|
877 |
else /* general case */
|
|
878 |
{
|
|
879 |
#ifdef FT_LONG64
|
|
880 |
|
|
881 |
FT_Int64 delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
|
|
882 |
|
|
883 |
|
|
884 |
if ( delta == 0 )
|
|
885 |
result = 0;
|
|
886 |
else
|
|
887 |
result = 1 - 2 * ( delta < 0 );
|
|
888 |
|
|
889 |
#else
|
|
890 |
|
|
891 |
FT_Int64 z1, z2;
|
|
892 |
|
|
893 |
|
|
894 |
/* XXX: this function does not allow 64-bit arguments */
|
|
895 |
ft_multo64( (FT_Int32)in_x, (FT_Int32)out_y, &z1 );
|
|
896 |
ft_multo64( (FT_Int32)in_y, (FT_Int32)out_x, &z2 );
|
|
897 |
|
|
898 |
if ( z1.hi > z2.hi )
|
|
899 |
result = +1;
|
|
900 |
else if ( z1.hi < z2.hi )
|
|
901 |
result = -1;
|
|
902 |
else if ( z1.lo > z2.lo )
|
|
903 |
result = +1;
|
|
904 |
else if ( z1.lo < z2.lo )
|
|
905 |
result = -1;
|
|
906 |
else
|
|
907 |
result = 0;
|
|
908 |
|
|
909 |
#endif
|
|
910 |
}
|
|
911 |
|
|
912 |
/* XXX: only the sign of return value, +1/0/-1 must be used */
|
|
913 |
return (FT_Int)result;
|
|
914 |
}
|
|
915 |
|
|
916 |
|
|
917 |
/* documentation is in ftcalc.h */
|
|
918 |
|
|
919 |
FT_BASE_DEF( FT_Int )
|
|
920 |
ft_corner_is_flat( FT_Pos in_x,
|
|
921 |
FT_Pos in_y,
|
|
922 |
FT_Pos out_x,
|
|
923 |
FT_Pos out_y )
|
|
924 |
{
|
|
925 |
FT_Pos ax = in_x;
|
|
926 |
FT_Pos ay = in_y;
|
|
927 |
|
|
928 |
FT_Pos d_in, d_out, d_corner;
|
|
929 |
|
|
930 |
|
|
931 |
if ( ax < 0 )
|
|
932 |
ax = -ax;
|
|
933 |
if ( ay < 0 )
|
|
934 |
ay = -ay;
|
|
935 |
d_in = ax + ay;
|
|
936 |
|
|
937 |
ax = out_x;
|
|
938 |
if ( ax < 0 )
|
|
939 |
ax = -ax;
|
|
940 |
ay = out_y;
|
|
941 |
if ( ay < 0 )
|
|
942 |
ay = -ay;
|
|
943 |
d_out = ax + ay;
|
|
944 |
|
|
945 |
ax = out_x + in_x;
|
|
946 |
if ( ax < 0 )
|
|
947 |
ax = -ax;
|
|
948 |
ay = out_y + in_y;
|
|
949 |
if ( ay < 0 )
|
|
950 |
ay = -ay;
|
|
951 |
d_corner = ax + ay;
|
|
952 |
|
|
953 |
return ( d_in + d_out - d_corner ) < ( d_corner >> 4 );
|
|
954 |
}
|
|
955 |
|
|
956 |
|
|
957 |
/* END */
|