5172
|
1 |
/***************************************************************************/
|
|
2 |
/* */
|
|
3 |
/* cffparse.c */
|
|
4 |
/* */
|
|
5 |
/* CFF token stream parser (body) */
|
|
6 |
/* */
|
|
7 |
/* Copyright 1996-2001, 2002, 2003, 2004, 2007, 2008, 2009, 2010 by */
|
|
8 |
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
9 |
/* */
|
|
10 |
/* This file is part of the FreeType project, and may only be used, */
|
|
11 |
/* modified, and distributed under the terms of the FreeType project */
|
|
12 |
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
13 |
/* this file you indicate that you have read the license and */
|
|
14 |
/* understand and accept it fully. */
|
|
15 |
/* */
|
|
16 |
/***************************************************************************/
|
|
17 |
|
|
18 |
|
|
19 |
#include <ft2build.h>
|
|
20 |
#include "cffparse.h"
|
|
21 |
#include FT_INTERNAL_STREAM_H
|
|
22 |
#include FT_INTERNAL_DEBUG_H
|
|
23 |
|
|
24 |
#include "cfferrs.h"
|
|
25 |
#include "cffpic.h"
|
|
26 |
|
|
27 |
|
|
28 |
/*************************************************************************/
|
|
29 |
/* */
|
|
30 |
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
|
|
31 |
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
|
|
32 |
/* messages during execution. */
|
|
33 |
/* */
|
|
34 |
#undef FT_COMPONENT
|
|
35 |
#define FT_COMPONENT trace_cffparse
|
|
36 |
|
|
37 |
|
|
38 |
|
|
39 |
|
|
40 |
FT_LOCAL_DEF( void )
|
|
41 |
cff_parser_init( CFF_Parser parser,
|
|
42 |
FT_UInt code,
|
|
43 |
void* object,
|
|
44 |
FT_Library library)
|
|
45 |
{
|
|
46 |
FT_MEM_ZERO( parser, sizeof ( *parser ) );
|
|
47 |
|
|
48 |
parser->top = parser->stack;
|
|
49 |
parser->object_code = code;
|
|
50 |
parser->object = object;
|
|
51 |
parser->library = library;
|
|
52 |
}
|
|
53 |
|
|
54 |
|
|
55 |
/* read an integer */
|
|
56 |
static FT_Long
|
|
57 |
cff_parse_integer( FT_Byte* start,
|
|
58 |
FT_Byte* limit )
|
|
59 |
{
|
|
60 |
FT_Byte* p = start;
|
|
61 |
FT_Int v = *p++;
|
|
62 |
FT_Long val = 0;
|
|
63 |
|
|
64 |
|
|
65 |
if ( v == 28 )
|
|
66 |
{
|
|
67 |
if ( p + 2 > limit )
|
|
68 |
goto Bad;
|
|
69 |
|
|
70 |
val = (FT_Short)( ( (FT_Int)p[0] << 8 ) | p[1] );
|
|
71 |
p += 2;
|
|
72 |
}
|
|
73 |
else if ( v == 29 )
|
|
74 |
{
|
|
75 |
if ( p + 4 > limit )
|
|
76 |
goto Bad;
|
|
77 |
|
|
78 |
val = ( (FT_Long)p[0] << 24 ) |
|
|
79 |
( (FT_Long)p[1] << 16 ) |
|
|
80 |
( (FT_Long)p[2] << 8 ) |
|
|
81 |
p[3];
|
|
82 |
p += 4;
|
|
83 |
}
|
|
84 |
else if ( v < 247 )
|
|
85 |
{
|
|
86 |
val = v - 139;
|
|
87 |
}
|
|
88 |
else if ( v < 251 )
|
|
89 |
{
|
|
90 |
if ( p + 1 > limit )
|
|
91 |
goto Bad;
|
|
92 |
|
|
93 |
val = ( v - 247 ) * 256 + p[0] + 108;
|
|
94 |
p++;
|
|
95 |
}
|
|
96 |
else
|
|
97 |
{
|
|
98 |
if ( p + 1 > limit )
|
|
99 |
goto Bad;
|
|
100 |
|
|
101 |
val = -( v - 251 ) * 256 - p[0] - 108;
|
|
102 |
p++;
|
|
103 |
}
|
|
104 |
|
|
105 |
Exit:
|
|
106 |
return val;
|
|
107 |
|
|
108 |
Bad:
|
|
109 |
val = 0;
|
|
110 |
goto Exit;
|
|
111 |
}
|
|
112 |
|
|
113 |
|
|
114 |
static const FT_Long power_tens[] =
|
|
115 |
{
|
|
116 |
1L,
|
|
117 |
10L,
|
|
118 |
100L,
|
|
119 |
1000L,
|
|
120 |
10000L,
|
|
121 |
100000L,
|
|
122 |
1000000L,
|
|
123 |
10000000L,
|
|
124 |
100000000L,
|
|
125 |
1000000000L
|
|
126 |
};
|
|
127 |
|
|
128 |
|
|
129 |
/* read a real */
|
|
130 |
static FT_Fixed
|
|
131 |
cff_parse_real( FT_Byte* start,
|
|
132 |
FT_Byte* limit,
|
|
133 |
FT_Long power_ten,
|
|
134 |
FT_Long* scaling )
|
|
135 |
{
|
|
136 |
FT_Byte* p = start;
|
|
137 |
FT_UInt nib;
|
|
138 |
FT_UInt phase;
|
|
139 |
|
|
140 |
FT_Long result, number, exponent;
|
|
141 |
FT_Int sign = 0, exponent_sign = 0;
|
|
142 |
FT_Long exponent_add, integer_length, fraction_length;
|
|
143 |
|
|
144 |
|
|
145 |
if ( scaling )
|
|
146 |
*scaling = 0;
|
|
147 |
|
|
148 |
result = 0;
|
|
149 |
|
|
150 |
number = 0;
|
|
151 |
exponent = 0;
|
|
152 |
|
|
153 |
exponent_add = 0;
|
|
154 |
integer_length = 0;
|
|
155 |
fraction_length = 0;
|
|
156 |
|
|
157 |
/* First of all, read the integer part. */
|
|
158 |
phase = 4;
|
|
159 |
|
|
160 |
for (;;)
|
|
161 |
{
|
|
162 |
/* If we entered this iteration with phase == 4, we need to */
|
|
163 |
/* read a new byte. This also skips past the initial 0x1E. */
|
|
164 |
if ( phase )
|
|
165 |
{
|
|
166 |
p++;
|
|
167 |
|
|
168 |
/* Make sure we don't read past the end. */
|
|
169 |
if ( p >= limit )
|
|
170 |
goto Exit;
|
|
171 |
}
|
|
172 |
|
|
173 |
/* Get the nibble. */
|
|
174 |
nib = ( p[0] >> phase ) & 0xF;
|
|
175 |
phase = 4 - phase;
|
|
176 |
|
|
177 |
if ( nib == 0xE )
|
|
178 |
sign = 1;
|
|
179 |
else if ( nib > 9 )
|
|
180 |
break;
|
|
181 |
else
|
|
182 |
{
|
|
183 |
/* Increase exponent if we can't add the digit. */
|
|
184 |
if ( number >= 0xCCCCCCCL )
|
|
185 |
exponent_add++;
|
|
186 |
/* Skip leading zeros. */
|
|
187 |
else if ( nib || number )
|
|
188 |
{
|
|
189 |
integer_length++;
|
|
190 |
number = number * 10 + nib;
|
|
191 |
}
|
|
192 |
}
|
|
193 |
}
|
|
194 |
|
|
195 |
/* Read fraction part, if any. */
|
|
196 |
if ( nib == 0xa )
|
|
197 |
for (;;)
|
|
198 |
{
|
|
199 |
/* If we entered this iteration with phase == 4, we need */
|
|
200 |
/* to read a new byte. */
|
|
201 |
if ( phase )
|
|
202 |
{
|
|
203 |
p++;
|
|
204 |
|
|
205 |
/* Make sure we don't read past the end. */
|
|
206 |
if ( p >= limit )
|
|
207 |
goto Exit;
|
|
208 |
}
|
|
209 |
|
|
210 |
/* Get the nibble. */
|
|
211 |
nib = ( p[0] >> phase ) & 0xF;
|
|
212 |
phase = 4 - phase;
|
|
213 |
if ( nib >= 10 )
|
|
214 |
break;
|
|
215 |
|
|
216 |
/* Skip leading zeros if possible. */
|
|
217 |
if ( !nib && !number )
|
|
218 |
exponent_add--;
|
|
219 |
/* Only add digit if we don't overflow. */
|
|
220 |
else if ( number < 0xCCCCCCCL && fraction_length < 9 )
|
|
221 |
{
|
|
222 |
fraction_length++;
|
|
223 |
number = number * 10 + nib;
|
|
224 |
}
|
|
225 |
}
|
|
226 |
|
|
227 |
/* Read exponent, if any. */
|
|
228 |
if ( nib == 12 )
|
|
229 |
{
|
|
230 |
exponent_sign = 1;
|
|
231 |
nib = 11;
|
|
232 |
}
|
|
233 |
|
|
234 |
if ( nib == 11 )
|
|
235 |
{
|
|
236 |
for (;;)
|
|
237 |
{
|
|
238 |
/* If we entered this iteration with phase == 4, */
|
|
239 |
/* we need to read a new byte. */
|
|
240 |
if ( phase )
|
|
241 |
{
|
|
242 |
p++;
|
|
243 |
|
|
244 |
/* Make sure we don't read past the end. */
|
|
245 |
if ( p >= limit )
|
|
246 |
goto Exit;
|
|
247 |
}
|
|
248 |
|
|
249 |
/* Get the nibble. */
|
|
250 |
nib = ( p[0] >> phase ) & 0xF;
|
|
251 |
phase = 4 - phase;
|
|
252 |
if ( nib >= 10 )
|
|
253 |
break;
|
|
254 |
|
|
255 |
exponent = exponent * 10 + nib;
|
|
256 |
|
|
257 |
/* Arbitrarily limit exponent. */
|
|
258 |
if ( exponent > 1000 )
|
|
259 |
goto Exit;
|
|
260 |
}
|
|
261 |
|
|
262 |
if ( exponent_sign )
|
|
263 |
exponent = -exponent;
|
|
264 |
}
|
|
265 |
|
|
266 |
/* We don't check `power_ten' and `exponent_add'. */
|
|
267 |
exponent += power_ten + exponent_add;
|
|
268 |
|
|
269 |
if ( scaling )
|
|
270 |
{
|
|
271 |
/* Only use `fraction_length'. */
|
|
272 |
fraction_length += integer_length;
|
|
273 |
exponent += integer_length;
|
|
274 |
|
|
275 |
if ( fraction_length <= 5 )
|
|
276 |
{
|
|
277 |
if ( number > 0x7FFFL )
|
|
278 |
{
|
|
279 |
result = FT_DivFix( number, 10 );
|
|
280 |
*scaling = exponent - fraction_length + 1;
|
|
281 |
}
|
|
282 |
else
|
|
283 |
{
|
|
284 |
if ( exponent > 0 )
|
|
285 |
{
|
|
286 |
FT_Long new_fraction_length, shift;
|
|
287 |
|
|
288 |
|
|
289 |
/* Make `scaling' as small as possible. */
|
|
290 |
new_fraction_length = FT_MIN( exponent, 5 );
|
|
291 |
exponent -= new_fraction_length;
|
|
292 |
shift = new_fraction_length - fraction_length;
|
|
293 |
|
|
294 |
number *= power_tens[shift];
|
|
295 |
if ( number > 0x7FFFL )
|
|
296 |
{
|
|
297 |
number /= 10;
|
|
298 |
exponent += 1;
|
|
299 |
}
|
|
300 |
}
|
|
301 |
else
|
|
302 |
exponent -= fraction_length;
|
|
303 |
|
|
304 |
result = number << 16;
|
|
305 |
*scaling = exponent;
|
|
306 |
}
|
|
307 |
}
|
|
308 |
else
|
|
309 |
{
|
|
310 |
if ( ( number / power_tens[fraction_length - 5] ) > 0x7FFFL )
|
|
311 |
{
|
|
312 |
result = FT_DivFix( number, power_tens[fraction_length - 4] );
|
|
313 |
*scaling = exponent - 4;
|
|
314 |
}
|
|
315 |
else
|
|
316 |
{
|
|
317 |
result = FT_DivFix( number, power_tens[fraction_length - 5] );
|
|
318 |
*scaling = exponent - 5;
|
|
319 |
}
|
|
320 |
}
|
|
321 |
}
|
|
322 |
else
|
|
323 |
{
|
|
324 |
integer_length += exponent;
|
|
325 |
fraction_length -= exponent;
|
|
326 |
|
|
327 |
/* Check for overflow and underflow. */
|
|
328 |
if ( FT_ABS( integer_length ) > 5 )
|
|
329 |
goto Exit;
|
|
330 |
|
|
331 |
/* Remove non-significant digits. */
|
|
332 |
if ( integer_length < 0 )
|
|
333 |
{
|
|
334 |
number /= power_tens[-integer_length];
|
|
335 |
fraction_length += integer_length;
|
|
336 |
}
|
|
337 |
|
|
338 |
/* this can only happen if exponent was non-zero */
|
|
339 |
if ( fraction_length == 10 )
|
|
340 |
{
|
|
341 |
number /= 10;
|
|
342 |
fraction_length -= 1;
|
|
343 |
}
|
|
344 |
|
|
345 |
/* Convert into 16.16 format. */
|
|
346 |
if ( fraction_length > 0 )
|
|
347 |
{
|
|
348 |
if ( ( number / power_tens[fraction_length] ) > 0x7FFFL )
|
|
349 |
goto Exit;
|
|
350 |
|
|
351 |
result = FT_DivFix( number, power_tens[fraction_length] );
|
|
352 |
}
|
|
353 |
else
|
|
354 |
{
|
|
355 |
number *= power_tens[-fraction_length];
|
|
356 |
|
|
357 |
if ( number > 0x7FFFL )
|
|
358 |
goto Exit;
|
|
359 |
|
|
360 |
result = number << 16;
|
|
361 |
}
|
|
362 |
}
|
|
363 |
|
|
364 |
if ( sign )
|
|
365 |
result = -result;
|
|
366 |
|
|
367 |
Exit:
|
|
368 |
return result;
|
|
369 |
}
|
|
370 |
|
|
371 |
|
|
372 |
/* read a number, either integer or real */
|
|
373 |
static FT_Long
|
|
374 |
cff_parse_num( FT_Byte** d )
|
|
375 |
{
|
|
376 |
return **d == 30 ? ( cff_parse_real( d[0], d[1], 0, NULL ) >> 16 )
|
|
377 |
: cff_parse_integer( d[0], d[1] );
|
|
378 |
}
|
|
379 |
|
|
380 |
|
|
381 |
/* read a floating point number, either integer or real */
|
|
382 |
static FT_Fixed
|
|
383 |
cff_parse_fixed( FT_Byte** d )
|
|
384 |
{
|
|
385 |
return **d == 30 ? cff_parse_real( d[0], d[1], 0, NULL )
|
|
386 |
: cff_parse_integer( d[0], d[1] ) << 16;
|
|
387 |
}
|
|
388 |
|
|
389 |
|
|
390 |
/* read a floating point number, either integer or real, */
|
|
391 |
/* but return `10^scaling' times the number read in */
|
|
392 |
static FT_Fixed
|
|
393 |
cff_parse_fixed_scaled( FT_Byte** d,
|
|
394 |
FT_Long scaling )
|
|
395 |
{
|
|
396 |
return **d == 30 ? cff_parse_real( d[0], d[1], scaling, NULL )
|
|
397 |
: ( cff_parse_integer( d[0], d[1] ) *
|
|
398 |
power_tens[scaling] ) << 16;
|
|
399 |
}
|
|
400 |
|
|
401 |
|
|
402 |
/* read a floating point number, either integer or real, */
|
|
403 |
/* and return it as precise as possible -- `scaling' returns */
|
|
404 |
/* the scaling factor (as a power of 10) */
|
|
405 |
static FT_Fixed
|
|
406 |
cff_parse_fixed_dynamic( FT_Byte** d,
|
|
407 |
FT_Long* scaling )
|
|
408 |
{
|
|
409 |
FT_ASSERT( scaling );
|
|
410 |
|
|
411 |
if ( **d == 30 )
|
|
412 |
return cff_parse_real( d[0], d[1], 0, scaling );
|
|
413 |
else
|
|
414 |
{
|
|
415 |
FT_Long number;
|
|
416 |
FT_Int integer_length;
|
|
417 |
|
|
418 |
|
|
419 |
number = cff_parse_integer( d[0], d[1] );
|
|
420 |
|
|
421 |
if ( number > 0x7FFFL )
|
|
422 |
{
|
|
423 |
for ( integer_length = 5; integer_length < 10; integer_length++ )
|
|
424 |
if ( number < power_tens[integer_length] )
|
|
425 |
break;
|
|
426 |
|
|
427 |
if ( ( number / power_tens[integer_length - 5] ) > 0x7FFFL )
|
|
428 |
{
|
|
429 |
*scaling = integer_length - 4;
|
|
430 |
return FT_DivFix( number, power_tens[integer_length - 4] );
|
|
431 |
}
|
|
432 |
else
|
|
433 |
{
|
|
434 |
*scaling = integer_length - 5;
|
|
435 |
return FT_DivFix( number, power_tens[integer_length - 5] );
|
|
436 |
}
|
|
437 |
}
|
|
438 |
else
|
|
439 |
{
|
|
440 |
*scaling = 0;
|
|
441 |
return number << 16;
|
|
442 |
}
|
|
443 |
}
|
|
444 |
}
|
|
445 |
|
|
446 |
|
|
447 |
static FT_Error
|
|
448 |
cff_parse_font_matrix( CFF_Parser parser )
|
|
449 |
{
|
|
450 |
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
|
|
451 |
FT_Matrix* matrix = &dict->font_matrix;
|
|
452 |
FT_Vector* offset = &dict->font_offset;
|
|
453 |
FT_ULong* upm = &dict->units_per_em;
|
|
454 |
FT_Byte** data = parser->stack;
|
|
455 |
FT_Error error = CFF_Err_Stack_Underflow;
|
|
456 |
|
|
457 |
|
|
458 |
if ( parser->top >= parser->stack + 6 )
|
|
459 |
{
|
|
460 |
FT_Long scaling;
|
|
461 |
|
|
462 |
|
|
463 |
error = CFF_Err_Ok;
|
|
464 |
|
|
465 |
/* We expect a well-formed font matrix, this is, the matrix elements */
|
|
466 |
/* `xx' and `yy' are of approximately the same magnitude. To avoid */
|
|
467 |
/* loss of precision, we use the magnitude of element `xx' to scale */
|
|
468 |
/* all other elements. The scaling factor is then contained in the */
|
|
469 |
/* `units_per_em' value. */
|
|
470 |
|
|
471 |
matrix->xx = cff_parse_fixed_dynamic( data++, &scaling );
|
|
472 |
|
|
473 |
scaling = -scaling;
|
|
474 |
|
|
475 |
if ( scaling < 0 || scaling > 9 )
|
|
476 |
{
|
|
477 |
/* Return default matrix in case of unlikely values. */
|
|
478 |
matrix->xx = 0x10000L;
|
|
479 |
matrix->yx = 0;
|
|
480 |
matrix->yx = 0;
|
|
481 |
matrix->yy = 0x10000L;
|
|
482 |
offset->x = 0;
|
|
483 |
offset->y = 0;
|
|
484 |
*upm = 1;
|
|
485 |
|
|
486 |
goto Exit;
|
|
487 |
}
|
|
488 |
|
|
489 |
matrix->yx = cff_parse_fixed_scaled( data++, scaling );
|
|
490 |
matrix->xy = cff_parse_fixed_scaled( data++, scaling );
|
|
491 |
matrix->yy = cff_parse_fixed_scaled( data++, scaling );
|
|
492 |
offset->x = cff_parse_fixed_scaled( data++, scaling );
|
|
493 |
offset->y = cff_parse_fixed_scaled( data, scaling );
|
|
494 |
|
|
495 |
*upm = power_tens[scaling];
|
|
496 |
}
|
|
497 |
|
|
498 |
Exit:
|
|
499 |
return error;
|
|
500 |
}
|
|
501 |
|
|
502 |
|
|
503 |
static FT_Error
|
|
504 |
cff_parse_font_bbox( CFF_Parser parser )
|
|
505 |
{
|
|
506 |
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
|
|
507 |
FT_BBox* bbox = &dict->font_bbox;
|
|
508 |
FT_Byte** data = parser->stack;
|
|
509 |
FT_Error error;
|
|
510 |
|
|
511 |
|
|
512 |
error = CFF_Err_Stack_Underflow;
|
|
513 |
|
|
514 |
if ( parser->top >= parser->stack + 4 )
|
|
515 |
{
|
|
516 |
bbox->xMin = FT_RoundFix( cff_parse_fixed( data++ ) );
|
|
517 |
bbox->yMin = FT_RoundFix( cff_parse_fixed( data++ ) );
|
|
518 |
bbox->xMax = FT_RoundFix( cff_parse_fixed( data++ ) );
|
|
519 |
bbox->yMax = FT_RoundFix( cff_parse_fixed( data ) );
|
|
520 |
error = CFF_Err_Ok;
|
|
521 |
}
|
|
522 |
|
|
523 |
return error;
|
|
524 |
}
|
|
525 |
|
|
526 |
|
|
527 |
static FT_Error
|
|
528 |
cff_parse_private_dict( CFF_Parser parser )
|
|
529 |
{
|
|
530 |
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
|
|
531 |
FT_Byte** data = parser->stack;
|
|
532 |
FT_Error error;
|
|
533 |
|
|
534 |
|
|
535 |
error = CFF_Err_Stack_Underflow;
|
|
536 |
|
|
537 |
if ( parser->top >= parser->stack + 2 )
|
|
538 |
{
|
|
539 |
dict->private_size = cff_parse_num( data++ );
|
|
540 |
dict->private_offset = cff_parse_num( data );
|
|
541 |
error = CFF_Err_Ok;
|
|
542 |
}
|
|
543 |
|
|
544 |
return error;
|
|
545 |
}
|
|
546 |
|
|
547 |
|
|
548 |
static FT_Error
|
|
549 |
cff_parse_cid_ros( CFF_Parser parser )
|
|
550 |
{
|
|
551 |
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
|
|
552 |
FT_Byte** data = parser->stack;
|
|
553 |
FT_Error error;
|
|
554 |
|
|
555 |
|
|
556 |
error = CFF_Err_Stack_Underflow;
|
|
557 |
|
|
558 |
if ( parser->top >= parser->stack + 3 )
|
|
559 |
{
|
|
560 |
dict->cid_registry = (FT_UInt)cff_parse_num ( data++ );
|
|
561 |
dict->cid_ordering = (FT_UInt)cff_parse_num ( data++ );
|
|
562 |
if ( **data == 30 )
|
|
563 |
FT_TRACE1(( "cff_parse_cid_ros: real supplement is rounded\n" ));
|
|
564 |
dict->cid_supplement = cff_parse_num( data );
|
|
565 |
if ( dict->cid_supplement < 0 )
|
|
566 |
FT_TRACE1(( "cff_parse_cid_ros: negative supplement %d is found\n",
|
|
567 |
dict->cid_supplement ));
|
|
568 |
error = CFF_Err_Ok;
|
|
569 |
}
|
|
570 |
|
|
571 |
return error;
|
|
572 |
}
|
|
573 |
|
|
574 |
|
|
575 |
#define CFF_FIELD_NUM( code, name ) \
|
|
576 |
CFF_FIELD( code, name, cff_kind_num )
|
|
577 |
#define CFF_FIELD_FIXED( code, name ) \
|
|
578 |
CFF_FIELD( code, name, cff_kind_fixed )
|
|
579 |
#define CFF_FIELD_FIXED_1000( code, name ) \
|
|
580 |
CFF_FIELD( code, name, cff_kind_fixed_thousand )
|
|
581 |
#define CFF_FIELD_STRING( code, name ) \
|
|
582 |
CFF_FIELD( code, name, cff_kind_string )
|
|
583 |
#define CFF_FIELD_BOOL( code, name ) \
|
|
584 |
CFF_FIELD( code, name, cff_kind_bool )
|
|
585 |
#define CFF_FIELD_DELTA( code, name, max ) \
|
|
586 |
CFF_FIELD( code, name, cff_kind_delta )
|
|
587 |
|
|
588 |
#define CFFCODE_TOPDICT 0x1000
|
|
589 |
#define CFFCODE_PRIVATE 0x2000
|
|
590 |
|
|
591 |
#ifndef FT_CONFIG_OPTION_PIC
|
|
592 |
|
|
593 |
#define CFF_FIELD_CALLBACK( code, name ) \
|
|
594 |
{ \
|
|
595 |
cff_kind_callback, \
|
|
596 |
code | CFFCODE, \
|
|
597 |
0, 0, \
|
|
598 |
cff_parse_ ## name, \
|
|
599 |
0, 0 \
|
|
600 |
},
|
|
601 |
|
|
602 |
#undef CFF_FIELD
|
|
603 |
#define CFF_FIELD( code, name, kind ) \
|
|
604 |
{ \
|
|
605 |
kind, \
|
|
606 |
code | CFFCODE, \
|
|
607 |
FT_FIELD_OFFSET( name ), \
|
|
608 |
FT_FIELD_SIZE( name ), \
|
|
609 |
0, 0, 0 \
|
|
610 |
},
|
|
611 |
|
|
612 |
#undef CFF_FIELD_DELTA
|
|
613 |
#define CFF_FIELD_DELTA( code, name, max ) \
|
|
614 |
{ \
|
|
615 |
cff_kind_delta, \
|
|
616 |
code | CFFCODE, \
|
|
617 |
FT_FIELD_OFFSET( name ), \
|
|
618 |
FT_FIELD_SIZE_DELTA( name ), \
|
|
619 |
0, \
|
|
620 |
max, \
|
|
621 |
FT_FIELD_OFFSET( num_ ## name ) \
|
|
622 |
},
|
|
623 |
|
|
624 |
static const CFF_Field_Handler cff_field_handlers[] =
|
|
625 |
{
|
|
626 |
|
|
627 |
#include "cfftoken.h"
|
|
628 |
|
|
629 |
{ 0, 0, 0, 0, 0, 0, 0 }
|
|
630 |
};
|
|
631 |
|
|
632 |
|
|
633 |
#else /* FT_CONFIG_OPTION_PIC */
|
|
634 |
|
|
635 |
void FT_Destroy_Class_cff_field_handlers(FT_Library library, CFF_Field_Handler* clazz)
|
|
636 |
{
|
|
637 |
FT_Memory memory = library->memory;
|
|
638 |
if ( clazz )
|
|
639 |
FT_FREE( clazz );
|
|
640 |
}
|
|
641 |
|
|
642 |
FT_Error FT_Create_Class_cff_field_handlers(FT_Library library, CFF_Field_Handler** output_class)
|
|
643 |
{
|
|
644 |
CFF_Field_Handler* clazz;
|
|
645 |
FT_Error error;
|
|
646 |
FT_Memory memory = library->memory;
|
|
647 |
int i=0;
|
|
648 |
|
|
649 |
#undef CFF_FIELD
|
|
650 |
#undef CFF_FIELD_DELTA
|
|
651 |
#undef CFF_FIELD_CALLBACK
|
|
652 |
#define CFF_FIELD_CALLBACK( code, name ) i++;
|
|
653 |
#define CFF_FIELD( code, name, kind ) i++;
|
|
654 |
#define CFF_FIELD_DELTA( code, name, max ) i++;
|
|
655 |
|
|
656 |
#include "cfftoken.h"
|
|
657 |
i++;/*{ 0, 0, 0, 0, 0, 0, 0 }*/
|
|
658 |
|
|
659 |
if ( FT_ALLOC( clazz, sizeof(CFF_Field_Handler)*i ) )
|
|
660 |
return error;
|
|
661 |
|
|
662 |
i=0;
|
|
663 |
#undef CFF_FIELD
|
|
664 |
#undef CFF_FIELD_DELTA
|
|
665 |
#undef CFF_FIELD_CALLBACK
|
|
666 |
|
|
667 |
#define CFF_FIELD_CALLBACK( code_, name_ ) \
|
|
668 |
clazz[i].kind = cff_kind_callback; \
|
|
669 |
clazz[i].code = code_ | CFFCODE; \
|
|
670 |
clazz[i].offset = 0; \
|
|
671 |
clazz[i].size = 0; \
|
|
672 |
clazz[i].reader = cff_parse_ ## name_; \
|
|
673 |
clazz[i].array_max = 0; \
|
|
674 |
clazz[i].count_offset = 0; \
|
|
675 |
i++;
|
|
676 |
|
|
677 |
#undef CFF_FIELD
|
|
678 |
#define CFF_FIELD( code_, name_, kind_ ) \
|
|
679 |
clazz[i].kind = kind_; \
|
|
680 |
clazz[i].code = code_ | CFFCODE; \
|
|
681 |
clazz[i].offset = FT_FIELD_OFFSET( name_ ); \
|
|
682 |
clazz[i].size = FT_FIELD_SIZE( name_ ); \
|
|
683 |
clazz[i].reader = 0; \
|
|
684 |
clazz[i].array_max = 0; \
|
|
685 |
clazz[i].count_offset = 0; \
|
|
686 |
i++; \
|
|
687 |
|
|
688 |
#undef CFF_FIELD_DELTA
|
|
689 |
#define CFF_FIELD_DELTA( code_, name_, max_ ) \
|
|
690 |
clazz[i].kind = cff_kind_delta; \
|
|
691 |
clazz[i].code = code_ | CFFCODE; \
|
|
692 |
clazz[i].offset = FT_FIELD_OFFSET( name_ ); \
|
|
693 |
clazz[i].size = FT_FIELD_SIZE_DELTA( name_ ); \
|
|
694 |
clazz[i].reader = 0; \
|
|
695 |
clazz[i].array_max = max_; \
|
|
696 |
clazz[i].count_offset = FT_FIELD_OFFSET( num_ ## name_ ); \
|
|
697 |
i++;
|
|
698 |
|
|
699 |
#include "cfftoken.h"
|
|
700 |
|
|
701 |
clazz[i].kind = 0;
|
|
702 |
clazz[i].code = 0;
|
|
703 |
clazz[i].offset = 0;
|
|
704 |
clazz[i].size = 0;
|
|
705 |
clazz[i].reader = 0;
|
|
706 |
clazz[i].array_max = 0;
|
|
707 |
clazz[i].count_offset = 0;
|
|
708 |
|
|
709 |
*output_class = clazz;
|
|
710 |
return CFF_Err_Ok;
|
|
711 |
}
|
|
712 |
|
|
713 |
|
|
714 |
#endif /* FT_CONFIG_OPTION_PIC */
|
|
715 |
|
|
716 |
|
|
717 |
FT_LOCAL_DEF( FT_Error )
|
|
718 |
cff_parser_run( CFF_Parser parser,
|
|
719 |
FT_Byte* start,
|
|
720 |
FT_Byte* limit )
|
|
721 |
{
|
|
722 |
FT_Byte* p = start;
|
|
723 |
FT_Error error = CFF_Err_Ok;
|
|
724 |
FT_Library library = parser->library;
|
|
725 |
FT_UNUSED(library);
|
|
726 |
|
|
727 |
|
|
728 |
parser->top = parser->stack;
|
|
729 |
parser->start = start;
|
|
730 |
parser->limit = limit;
|
|
731 |
parser->cursor = start;
|
|
732 |
|
|
733 |
while ( p < limit )
|
|
734 |
{
|
|
735 |
FT_UInt v = *p;
|
|
736 |
|
|
737 |
|
|
738 |
if ( v >= 27 && v != 31 )
|
|
739 |
{
|
|
740 |
/* it's a number; we will push its position on the stack */
|
|
741 |
if ( parser->top - parser->stack >= CFF_MAX_STACK_DEPTH )
|
|
742 |
goto Stack_Overflow;
|
|
743 |
|
|
744 |
*parser->top ++ = p;
|
|
745 |
|
|
746 |
/* now, skip it */
|
|
747 |
if ( v == 30 )
|
|
748 |
{
|
|
749 |
/* skip real number */
|
|
750 |
p++;
|
|
751 |
for (;;)
|
|
752 |
{
|
|
753 |
/* An unterminated floating point number at the */
|
|
754 |
/* end of a dictionary is invalid but harmless. */
|
|
755 |
if ( p >= limit )
|
|
756 |
goto Exit;
|
|
757 |
v = p[0] >> 4;
|
|
758 |
if ( v == 15 )
|
|
759 |
break;
|
|
760 |
v = p[0] & 0xF;
|
|
761 |
if ( v == 15 )
|
|
762 |
break;
|
|
763 |
p++;
|
|
764 |
}
|
|
765 |
}
|
|
766 |
else if ( v == 28 )
|
|
767 |
p += 2;
|
|
768 |
else if ( v == 29 )
|
|
769 |
p += 4;
|
|
770 |
else if ( v > 246 )
|
|
771 |
p += 1;
|
|
772 |
}
|
|
773 |
else
|
|
774 |
{
|
|
775 |
/* This is not a number, hence it's an operator. Compute its code */
|
|
776 |
/* and look for it in our current list. */
|
|
777 |
|
|
778 |
FT_UInt code;
|
|
779 |
FT_UInt num_args = (FT_UInt)
|
|
780 |
( parser->top - parser->stack );
|
|
781 |
const CFF_Field_Handler* field;
|
|
782 |
|
|
783 |
|
|
784 |
*parser->top = p;
|
|
785 |
code = v;
|
|
786 |
if ( v == 12 )
|
|
787 |
{
|
|
788 |
/* two byte operator */
|
|
789 |
p++;
|
|
790 |
if ( p >= limit )
|
|
791 |
goto Syntax_Error;
|
|
792 |
|
|
793 |
code = 0x100 | p[0];
|
|
794 |
}
|
|
795 |
code = code | parser->object_code;
|
|
796 |
|
|
797 |
for ( field = FT_CFF_FIELD_HANDLERS_GET; field->kind; field++ )
|
|
798 |
{
|
|
799 |
if ( field->code == (FT_Int)code )
|
|
800 |
{
|
|
801 |
/* we found our field's handler; read it */
|
|
802 |
FT_Long val;
|
|
803 |
FT_Byte* q = (FT_Byte*)parser->object + field->offset;
|
|
804 |
|
|
805 |
|
|
806 |
/* check that we have enough arguments -- except for */
|
|
807 |
/* delta encoded arrays, which can be empty */
|
|
808 |
if ( field->kind != cff_kind_delta && num_args < 1 )
|
|
809 |
goto Stack_Underflow;
|
|
810 |
|
|
811 |
switch ( field->kind )
|
|
812 |
{
|
|
813 |
case cff_kind_bool:
|
|
814 |
case cff_kind_string:
|
|
815 |
case cff_kind_num:
|
|
816 |
val = cff_parse_num( parser->stack );
|
|
817 |
goto Store_Number;
|
|
818 |
|
|
819 |
case cff_kind_fixed:
|
|
820 |
val = cff_parse_fixed( parser->stack );
|
|
821 |
goto Store_Number;
|
|
822 |
|
|
823 |
case cff_kind_fixed_thousand:
|
|
824 |
val = cff_parse_fixed_scaled( parser->stack, 3 );
|
|
825 |
|
|
826 |
Store_Number:
|
|
827 |
switch ( field->size )
|
|
828 |
{
|
|
829 |
case (8 / FT_CHAR_BIT):
|
|
830 |
*(FT_Byte*)q = (FT_Byte)val;
|
|
831 |
break;
|
|
832 |
|
|
833 |
case (16 / FT_CHAR_BIT):
|
|
834 |
*(FT_Short*)q = (FT_Short)val;
|
|
835 |
break;
|
|
836 |
|
|
837 |
case (32 / FT_CHAR_BIT):
|
|
838 |
*(FT_Int32*)q = (FT_Int)val;
|
|
839 |
break;
|
|
840 |
|
|
841 |
default: /* for 64-bit systems */
|
|
842 |
*(FT_Long*)q = val;
|
|
843 |
}
|
|
844 |
break;
|
|
845 |
|
|
846 |
case cff_kind_delta:
|
|
847 |
{
|
|
848 |
FT_Byte* qcount = (FT_Byte*)parser->object +
|
|
849 |
field->count_offset;
|
|
850 |
|
|
851 |
FT_Byte** data = parser->stack;
|
|
852 |
|
|
853 |
|
|
854 |
if ( num_args > field->array_max )
|
|
855 |
num_args = field->array_max;
|
|
856 |
|
|
857 |
/* store count */
|
|
858 |
*qcount = (FT_Byte)num_args;
|
|
859 |
|
|
860 |
val = 0;
|
|
861 |
while ( num_args > 0 )
|
|
862 |
{
|
|
863 |
val += cff_parse_num( data++ );
|
|
864 |
switch ( field->size )
|
|
865 |
{
|
|
866 |
case (8 / FT_CHAR_BIT):
|
|
867 |
*(FT_Byte*)q = (FT_Byte)val;
|
|
868 |
break;
|
|
869 |
|
|
870 |
case (16 / FT_CHAR_BIT):
|
|
871 |
*(FT_Short*)q = (FT_Short)val;
|
|
872 |
break;
|
|
873 |
|
|
874 |
case (32 / FT_CHAR_BIT):
|
|
875 |
*(FT_Int32*)q = (FT_Int)val;
|
|
876 |
break;
|
|
877 |
|
|
878 |
default: /* for 64-bit systems */
|
|
879 |
*(FT_Long*)q = val;
|
|
880 |
}
|
|
881 |
|
|
882 |
q += field->size;
|
|
883 |
num_args--;
|
|
884 |
}
|
|
885 |
}
|
|
886 |
break;
|
|
887 |
|
|
888 |
default: /* callback */
|
|
889 |
error = field->reader( parser );
|
|
890 |
if ( error )
|
|
891 |
goto Exit;
|
|
892 |
}
|
|
893 |
goto Found;
|
|
894 |
}
|
|
895 |
}
|
|
896 |
|
|
897 |
/* this is an unknown operator, or it is unsupported; */
|
|
898 |
/* we will ignore it for now. */
|
|
899 |
|
|
900 |
Found:
|
|
901 |
/* clear stack */
|
|
902 |
parser->top = parser->stack;
|
|
903 |
}
|
|
904 |
p++;
|
|
905 |
}
|
|
906 |
|
|
907 |
Exit:
|
|
908 |
return error;
|
|
909 |
|
|
910 |
Stack_Overflow:
|
|
911 |
error = CFF_Err_Invalid_Argument;
|
|
912 |
goto Exit;
|
|
913 |
|
|
914 |
Stack_Underflow:
|
|
915 |
error = CFF_Err_Invalid_Argument;
|
|
916 |
goto Exit;
|
|
917 |
|
|
918 |
Syntax_Error:
|
|
919 |
error = CFF_Err_Invalid_Argument;
|
|
920 |
goto Exit;
|
|
921 |
}
|
|
922 |
|
|
923 |
|
|
924 |
/* END */
|