misc/libfreetype/src/base/ftbbox.c
changeset 5172 88f2e05288ba
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/misc/libfreetype/src/base/ftbbox.c	Mon Apr 25 01:46:54 2011 +0200
@@ -0,0 +1,662 @@
+/***************************************************************************/
+/*                                                                         */
+/*  ftbbox.c                                                               */
+/*                                                                         */
+/*    FreeType bbox computation (body).                                    */
+/*                                                                         */
+/*  Copyright 1996-2001, 2002, 2004, 2006, 2010 by                         */
+/*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
+/*                                                                         */
+/*  This file is part of the FreeType project, and may only be used        */
+/*  modified and distributed under the terms of the FreeType project       */
+/*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
+/*  this file you indicate that you have read the license and              */
+/*  understand and accept it fully.                                        */
+/*                                                                         */
+/***************************************************************************/
+
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* This component has a _single_ role: to compute exact outline bounding */
+  /* boxes.                                                                */
+  /*                                                                       */
+  /*************************************************************************/
+
+
+#include <ft2build.h>
+#include FT_BBOX_H
+#include FT_IMAGE_H
+#include FT_OUTLINE_H
+#include FT_INTERNAL_CALC_H
+#include FT_INTERNAL_OBJECTS_H
+
+
+  typedef struct  TBBox_Rec_
+  {
+    FT_Vector  last;
+    FT_BBox    bbox;
+
+  } TBBox_Rec;
+
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* <Function>                                                            */
+  /*    BBox_Move_To                                                       */
+  /*                                                                       */
+  /* <Description>                                                         */
+  /*    This function is used as a `move_to' and `line_to' emitter during  */
+  /*    FT_Outline_Decompose().  It simply records the destination point   */
+  /*    in `user->last'; no further computations are necessary since we    */
+  /*    use the cbox as the starting bbox which must be refined.           */
+  /*                                                                       */
+  /* <Input>                                                               */
+  /*    to   :: A pointer to the destination vector.                       */
+  /*                                                                       */
+  /* <InOut>                                                               */
+  /*    user :: A pointer to the current walk context.                     */
+  /*                                                                       */
+  /* <Return>                                                              */
+  /*    Always 0.  Needed for the interface only.                          */
+  /*                                                                       */
+  static int
+  BBox_Move_To( FT_Vector*  to,
+                TBBox_Rec*  user )
+  {
+    user->last = *to;
+
+    return 0;
+  }
+
+
+#define CHECK_X( p, bbox )  \
+          ( p->x < bbox.xMin || p->x > bbox.xMax )
+
+#define CHECK_Y( p, bbox )  \
+          ( p->y < bbox.yMin || p->y > bbox.yMax )
+
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* <Function>                                                            */
+  /*    BBox_Conic_Check                                                   */
+  /*                                                                       */
+  /* <Description>                                                         */
+  /*    Finds the extrema of a 1-dimensional conic Bezier curve and update */
+  /*    a bounding range.  This version uses direct computation, as it     */
+  /*    doesn't need square roots.                                         */
+  /*                                                                       */
+  /* <Input>                                                               */
+  /*    y1  :: The start coordinate.                                       */
+  /*                                                                       */
+  /*    y2  :: The coordinate of the control point.                        */
+  /*                                                                       */
+  /*    y3  :: The end coordinate.                                         */
+  /*                                                                       */
+  /* <InOut>                                                               */
+  /*    min :: The address of the current minimum.                         */
+  /*                                                                       */
+  /*    max :: The address of the current maximum.                         */
+  /*                                                                       */
+  static void
+  BBox_Conic_Check( FT_Pos   y1,
+                    FT_Pos   y2,
+                    FT_Pos   y3,
+                    FT_Pos*  min,
+                    FT_Pos*  max )
+  {
+    if ( y1 <= y3 && y2 == y1 )     /* flat arc */
+      goto Suite;
+
+    if ( y1 < y3 )
+    {
+      if ( y2 >= y1 && y2 <= y3 )   /* ascending arc */
+        goto Suite;
+    }
+    else
+    {
+      if ( y2 >= y3 && y2 <= y1 )   /* descending arc */
+      {
+        y2 = y1;
+        y1 = y3;
+        y3 = y2;
+        goto Suite;
+      }
+    }
+
+    y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 );
+
+  Suite:
+    if ( y1 < *min ) *min = y1;
+    if ( y3 > *max ) *max = y3;
+  }
+
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* <Function>                                                            */
+  /*    BBox_Conic_To                                                      */
+  /*                                                                       */
+  /* <Description>                                                         */
+  /*    This function is used as a `conic_to' emitter during               */
+  /*    FT_Outline_Decompose().  It checks a conic Bezier curve with the   */
+  /*    current bounding box, and computes its extrema if necessary to     */
+  /*    update it.                                                         */
+  /*                                                                       */
+  /* <Input>                                                               */
+  /*    control :: A pointer to a control point.                           */
+  /*                                                                       */
+  /*    to      :: A pointer to the destination vector.                    */
+  /*                                                                       */
+  /* <InOut>                                                               */
+  /*    user    :: The address of the current walk context.                */
+  /*                                                                       */
+  /* <Return>                                                              */
+  /*    Always 0.  Needed for the interface only.                          */
+  /*                                                                       */
+  /* <Note>                                                                */
+  /*    In the case of a non-monotonous arc, we compute directly the       */
+  /*    extremum coordinates, as it is sufficiently fast.                  */
+  /*                                                                       */
+  static int
+  BBox_Conic_To( FT_Vector*  control,
+                 FT_Vector*  to,
+                 TBBox_Rec*  user )
+  {
+    /* we don't need to check `to' since it is always an `on' point, thus */
+    /* within the bbox                                                    */
+
+    if ( CHECK_X( control, user->bbox ) )
+      BBox_Conic_Check( user->last.x,
+                        control->x,
+                        to->x,
+                        &user->bbox.xMin,
+                        &user->bbox.xMax );
+
+    if ( CHECK_Y( control, user->bbox ) )
+      BBox_Conic_Check( user->last.y,
+                        control->y,
+                        to->y,
+                        &user->bbox.yMin,
+                        &user->bbox.yMax );
+
+    user->last = *to;
+
+    return 0;
+  }
+
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* <Function>                                                            */
+  /*    BBox_Cubic_Check                                                   */
+  /*                                                                       */
+  /* <Description>                                                         */
+  /*    Finds the extrema of a 1-dimensional cubic Bezier curve and        */
+  /*    updates a bounding range.  This version uses splitting because we  */
+  /*    don't want to use square roots and extra accuracy.                 */
+  /*                                                                       */
+  /* <Input>                                                               */
+  /*    p1  :: The start coordinate.                                       */
+  /*                                                                       */
+  /*    p2  :: The coordinate of the first control point.                  */
+  /*                                                                       */
+  /*    p3  :: The coordinate of the second control point.                 */
+  /*                                                                       */
+  /*    p4  :: The end coordinate.                                         */
+  /*                                                                       */
+  /* <InOut>                                                               */
+  /*    min :: The address of the current minimum.                         */
+  /*                                                                       */
+  /*    max :: The address of the current maximum.                         */
+  /*                                                                       */
+
+#if 0
+
+  static void
+  BBox_Cubic_Check( FT_Pos   p1,
+                    FT_Pos   p2,
+                    FT_Pos   p3,
+                    FT_Pos   p4,
+                    FT_Pos*  min,
+                    FT_Pos*  max )
+  {
+    FT_Pos  stack[32*3 + 1], *arc;
+
+
+    arc = stack;
+
+    arc[0] = p1;
+    arc[1] = p2;
+    arc[2] = p3;
+    arc[3] = p4;
+
+    do
+    {
+      FT_Pos  y1 = arc[0];
+      FT_Pos  y2 = arc[1];
+      FT_Pos  y3 = arc[2];
+      FT_Pos  y4 = arc[3];
+
+
+      if ( y1 == y4 )
+      {
+        if ( y1 == y2 && y1 == y3 )                         /* flat */
+          goto Test;
+      }
+      else if ( y1 < y4 )
+      {
+        if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* ascending */
+          goto Test;
+      }
+      else
+      {
+        if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* descending */
+        {
+          y2 = y1;
+          y1 = y4;
+          y4 = y2;
+          goto Test;
+        }
+      }
+
+      /* unknown direction -- split the arc in two */
+      arc[6] = y4;
+      arc[1] = y1 = ( y1 + y2 ) / 2;
+      arc[5] = y4 = ( y4 + y3 ) / 2;
+      y2 = ( y2 + y3 ) / 2;
+      arc[2] = y1 = ( y1 + y2 ) / 2;
+      arc[4] = y4 = ( y4 + y2 ) / 2;
+      arc[3] = ( y1 + y4 ) / 2;
+
+      arc += 3;
+      goto Suite;
+
+   Test:
+      if ( y1 < *min ) *min = y1;
+      if ( y4 > *max ) *max = y4;
+      arc -= 3;
+
+    Suite:
+      ;
+    } while ( arc >= stack );
+  }
+
+#else
+
+  static void
+  test_cubic_extrema( FT_Pos    y1,
+                      FT_Pos    y2,
+                      FT_Pos    y3,
+                      FT_Pos    y4,
+                      FT_Fixed  u,
+                      FT_Pos*   min,
+                      FT_Pos*   max )
+  {
+ /* FT_Pos    a = y4 - 3*y3 + 3*y2 - y1; */
+    FT_Pos    b = y3 - 2*y2 + y1;
+    FT_Pos    c = y2 - y1;
+    FT_Pos    d = y1;
+    FT_Pos    y;
+    FT_Fixed  uu;
+
+    FT_UNUSED ( y4 );
+
+
+    /* The polynomial is                      */
+    /*                                        */
+    /*    P(x) = a*x^3 + 3b*x^2 + 3c*x + d  , */
+    /*                                        */
+    /*   dP/dx = 3a*x^2 + 6b*x + 3c         . */
+    /*                                        */
+    /* However, we also have                  */
+    /*                                        */
+    /*   dP/dx(u) = 0                       , */
+    /*                                        */
+    /* which implies by subtraction that      */
+    /*                                        */
+    /*   P(u) = b*u^2 + 2c*u + d            . */
+
+    if ( u > 0 && u < 0x10000L )
+    {
+      uu = FT_MulFix( u, u );
+      y  = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );
+
+      if ( y < *min ) *min = y;
+      if ( y > *max ) *max = y;
+    }
+  }
+
+
+  static void
+  BBox_Cubic_Check( FT_Pos   y1,
+                    FT_Pos   y2,
+                    FT_Pos   y3,
+                    FT_Pos   y4,
+                    FT_Pos*  min,
+                    FT_Pos*  max )
+  {
+    /* always compare first and last points */
+    if      ( y1 < *min )  *min = y1;
+    else if ( y1 > *max )  *max = y1;
+
+    if      ( y4 < *min )  *min = y4;
+    else if ( y4 > *max )  *max = y4;
+
+    /* now, try to see if there are split points here */
+    if ( y1 <= y4 )
+    {
+      /* flat or ascending arc test */
+      if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
+        return;
+    }
+    else /* y1 > y4 */
+    {
+      /* descending arc test */
+      if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
+        return;
+    }
+
+    /* There are some split points.  Find them. */
+    {
+      FT_Pos    a = y4 - 3*y3 + 3*y2 - y1;
+      FT_Pos    b = y3 - 2*y2 + y1;
+      FT_Pos    c = y2 - y1;
+      FT_Pos    d;
+      FT_Fixed  t;
+
+
+      /* We need to solve `ax^2+2bx+c' here, without floating points!      */
+      /* The trick is to normalize to a different representation in order  */
+      /* to use our 16.16 fixed point routines.                            */
+      /*                                                                   */
+      /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
+      /* These values must fit into a single 16.16 value.                  */
+      /*                                                                   */
+      /* We normalize a, b, and c to `8.16' fixed float values to ensure   */
+      /* that its product is held in a `16.16' value.                      */
+
+      {
+        FT_ULong  t1, t2;
+        int       shift = 0;
+
+
+        /* The following computation is based on the fact that for   */
+        /* any value `y', if `n' is the position of the most         */
+        /* significant bit of `abs(y)' (starting from 0 for the      */
+        /* least significant bit), then `y' is in the range          */
+        /*                                                           */
+        /*   -2^n..2^n-1                                             */
+        /*                                                           */
+        /* We want to shift `a', `b', and `c' concurrently in order  */
+        /* to ensure that they all fit in 8.16 values, which maps    */
+        /* to the integer range `-2^23..2^23-1'.                     */
+        /*                                                           */
+        /* Necessarily, we need to shift `a', `b', and `c' so that   */
+        /* the most significant bit of its absolute values is at     */
+        /* _most_ at position 23.                                    */
+        /*                                                           */
+        /* We begin by computing `t1' as the bitwise `OR' of the     */
+        /* absolute values of `a', `b', `c'.                         */
+
+        t1  = (FT_ULong)( ( a >= 0 ) ? a : -a );
+        t2  = (FT_ULong)( ( b >= 0 ) ? b : -b );
+        t1 |= t2;
+        t2  = (FT_ULong)( ( c >= 0 ) ? c : -c );
+        t1 |= t2;
+
+        /* Now we can be sure that the most significant bit of `t1'  */
+        /* is the most significant bit of either `a', `b', or `c',   */
+        /* depending on the greatest integer range of the particular */
+        /* variable.                                                 */
+        /*                                                           */
+        /* Next, we compute the `shift', by shifting `t1' as many    */
+        /* times as necessary to move its MSB to position 23.  This  */
+        /* corresponds to a value of `t1' that is in the range       */
+        /* 0x40_0000..0x7F_FFFF.                                     */
+        /*                                                           */
+        /* Finally, we shift `a', `b', and `c' by the same amount.   */
+        /* This ensures that all values are now in the range         */
+        /* -2^23..2^23, i.e., they are now expressed as 8.16         */
+        /* fixed-float numbers.  This also means that we are using   */
+        /* 24 bits of precision to compute the zeros, independently  */
+        /* of the range of the original polynomial coefficients.     */
+        /*                                                           */
+        /* This algorithm should ensure reasonably accurate values   */
+        /* for the zeros.  Note that they are only expressed with    */
+        /* 16 bits when computing the extrema (the zeros need to     */
+        /* be in 0..1 exclusive to be considered part of the arc).   */
+
+        if ( t1 == 0 )  /* all coefficients are 0! */
+          return;
+
+        if ( t1 > 0x7FFFFFUL )
+        {
+          do
+          {
+            shift++;
+            t1 >>= 1;
+
+          } while ( t1 > 0x7FFFFFUL );
+
+          /* this loses some bits of precision, but we use 24 of them */
+          /* for the computation anyway                               */
+          a >>= shift;
+          b >>= shift;
+          c >>= shift;
+        }
+        else if ( t1 < 0x400000UL )
+        {
+          do
+          {
+            shift++;
+            t1 <<= 1;
+
+          } while ( t1 < 0x400000UL );
+
+          a <<= shift;
+          b <<= shift;
+          c <<= shift;
+        }
+      }
+
+      /* handle a == 0 */
+      if ( a == 0 )
+      {
+        if ( b != 0 )
+        {
+          t = - FT_DivFix( c, b ) / 2;
+          test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+        }
+      }
+      else
+      {
+        /* solve the equation now */
+        d = FT_MulFix( b, b ) - FT_MulFix( a, c );
+        if ( d < 0 )
+          return;
+
+        if ( d == 0 )
+        {
+          /* there is a single split point at -b/a */
+          t = - FT_DivFix( b, a );
+          test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+        }
+        else
+        {
+          /* there are two solutions; we need to filter them */
+          d = FT_SqrtFixed( (FT_Int32)d );
+          t = - FT_DivFix( b - d, a );
+          test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+
+          t = - FT_DivFix( b + d, a );
+          test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+        }
+      }
+    }
+  }
+
+#endif
+
+
+  /*************************************************************************/
+  /*                                                                       */
+  /* <Function>                                                            */
+  /*    BBox_Cubic_To                                                      */
+  /*                                                                       */
+  /* <Description>                                                         */
+  /*    This function is used as a `cubic_to' emitter during               */
+  /*    FT_Outline_Decompose().  It checks a cubic Bezier curve with the   */
+  /*    current bounding box, and computes its extrema if necessary to     */
+  /*    update it.                                                         */
+  /*                                                                       */
+  /* <Input>                                                               */
+  /*    control1 :: A pointer to the first control point.                  */
+  /*                                                                       */
+  /*    control2 :: A pointer to the second control point.                 */
+  /*                                                                       */
+  /*    to       :: A pointer to the destination vector.                   */
+  /*                                                                       */
+  /* <InOut>                                                               */
+  /*    user     :: The address of the current walk context.               */
+  /*                                                                       */
+  /* <Return>                                                              */
+  /*    Always 0.  Needed for the interface only.                          */
+  /*                                                                       */
+  /* <Note>                                                                */
+  /*    In the case of a non-monotonous arc, we don't compute directly     */
+  /*    extremum coordinates, we subdivide instead.                        */
+  /*                                                                       */
+  static int
+  BBox_Cubic_To( FT_Vector*  control1,
+                 FT_Vector*  control2,
+                 FT_Vector*  to,
+                 TBBox_Rec*  user )
+  {
+    /* we don't need to check `to' since it is always an `on' point, thus */
+    /* within the bbox                                                    */
+
+    if ( CHECK_X( control1, user->bbox ) ||
+         CHECK_X( control2, user->bbox ) )
+      BBox_Cubic_Check( user->last.x,
+                        control1->x,
+                        control2->x,
+                        to->x,
+                        &user->bbox.xMin,
+                        &user->bbox.xMax );
+
+    if ( CHECK_Y( control1, user->bbox ) ||
+         CHECK_Y( control2, user->bbox ) )
+      BBox_Cubic_Check( user->last.y,
+                        control1->y,
+                        control2->y,
+                        to->y,
+                        &user->bbox.yMin,
+                        &user->bbox.yMax );
+
+    user->last = *to;
+
+    return 0;
+  }
+
+FT_DEFINE_OUTLINE_FUNCS(bbox_interface,
+    (FT_Outline_MoveTo_Func) BBox_Move_To,
+    (FT_Outline_LineTo_Func) BBox_Move_To,
+    (FT_Outline_ConicTo_Func)BBox_Conic_To,
+    (FT_Outline_CubicTo_Func)BBox_Cubic_To,
+    0, 0
+  )
+
+  /* documentation is in ftbbox.h */
+
+  FT_EXPORT_DEF( FT_Error )
+  FT_Outline_Get_BBox( FT_Outline*  outline,
+                       FT_BBox     *abbox )
+  {
+    FT_BBox     cbox;
+    FT_BBox     bbox;
+    FT_Vector*  vec;
+    FT_UShort   n;
+
+
+    if ( !abbox )
+      return FT_Err_Invalid_Argument;
+
+    if ( !outline )
+      return FT_Err_Invalid_Outline;
+
+    /* if outline is empty, return (0,0,0,0) */
+    if ( outline->n_points == 0 || outline->n_contours <= 0 )
+    {
+      abbox->xMin = abbox->xMax = 0;
+      abbox->yMin = abbox->yMax = 0;
+      return 0;
+    }
+
+    /* We compute the control box as well as the bounding box of  */
+    /* all `on' points in the outline.  Then, if the two boxes    */
+    /* coincide, we exit immediately.                             */
+
+    vec = outline->points;
+    bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x;
+    bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y;
+    vec++;
+
+    for ( n = 1; n < outline->n_points; n++ )
+    {
+      FT_Pos  x = vec->x;
+      FT_Pos  y = vec->y;
+
+
+      /* update control box */
+      if ( x < cbox.xMin ) cbox.xMin = x;
+      if ( x > cbox.xMax ) cbox.xMax = x;
+
+      if ( y < cbox.yMin ) cbox.yMin = y;
+      if ( y > cbox.yMax ) cbox.yMax = y;
+
+      if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON )
+      {
+        /* update bbox for `on' points only */
+        if ( x < bbox.xMin ) bbox.xMin = x;
+        if ( x > bbox.xMax ) bbox.xMax = x;
+
+        if ( y < bbox.yMin ) bbox.yMin = y;
+        if ( y > bbox.yMax ) bbox.yMax = y;
+      }
+
+      vec++;
+    }
+
+    /* test two boxes for equality */
+    if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax ||
+         cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax )
+    {
+      /* the two boxes are different, now walk over the outline to */
+      /* get the Bezier arc extrema.                               */
+
+      FT_Error   error;
+      TBBox_Rec  user;
+
+#ifdef FT_CONFIG_OPTION_PIC
+      FT_Outline_Funcs bbox_interface;
+      Init_Class_bbox_interface(&bbox_interface);
+#endif
+
+      user.bbox = bbox;
+
+      error = FT_Outline_Decompose( outline, &bbox_interface, &user );
+      if ( error )
+        return error;
+
+      *abbox = user.bbox;
+    }
+    else
+      *abbox = bbox;
+
+    return FT_Err_Ok;
+  }
+
+
+/* END */