--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/gameServer/OfficialServer/Glicko2.hs Mon Nov 16 22:57:24 2015 +0300
@@ -0,0 +1,70 @@
+{-
+ Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
+-}
+
+module OfficialServer.Glicko2 where
+
+data RatingData = RatingData {
+ ratingValue
+ , rD
+ , volatility :: Double
+ }
+data GameData = GameData {
+ opponentRating :: RatingData,
+ gameScore :: Double
+ }
+
+τ, ε :: Double
+τ = 0.2
+ε = 0.000001
+
+g_φ :: Double -> Double
+g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)
+
+calcE :: RatingData -> GameData -> (Double, Double, Double)
+calcE oldRating (GameData oppRating s) = (
+ 1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
+ , g_φᵢ
+ , s
+ )
+ where
+ μ = (ratingValue oldRating - 1500) / 173.7178
+ φ = rD oldRating / 173.7178
+ μᵢ = (ratingValue oppRating - 1500) / 173.7178
+ φᵢ = rD oppRating / 173.7178
+ g_φᵢ = g_φ φᵢ
+
+
+calcNewRating :: RatingData -> [GameData] -> (Int, RatingData)
+calcNewRating oldRating [] = (0, RatingData (ratingValue oldRating) (173.7178 * sqrt (φ ^ 2 + σ ^ 2)) σ)
+ where
+ φ = rD oldRating / 173.7178
+ σ = volatility oldRating
+
+calcNewRating oldRating games = (length games, RatingData (173.7178 * μ' + 1500) (173.7178 * sqrt φ'sqr) σ')
+ where
+ _Es = map (calcE oldRating) games
+ υ = 1 / sum (map υ_p _Es)
+ υ_p (_Eᵢ, g_φᵢ, _) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
+ _Δ = υ * part1
+ part1 = sum (map _Δ_p _Es)
+ _Δ_p (_Eᵢ, g_φᵢ, sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)
+
+ μ = (ratingValue oldRating - 1500) / 173.7178
+ φ = rD oldRating / 173.7178
+ σ = volatility oldRating
+
+ a = log (σ ^ 2)
+ f :: Double -> Double
+ f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2
+
+ _A = a
+ _B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
+ fA = f _A
+ fB = f _B
+ σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
+ step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
+ if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)
+
+ φ'sqr = 1 / (1 / (φ ^ 2 + σ' ^ 2) + 1 / υ)
+ μ' = μ + φ'sqr * part1