corrected parsing joined with unC0Rr's corrected generating finally gives the right result
module Test where
import Control.Monad
import Data.Word
import qualified Data.IntSet as IS
data OP = Sum
| Mul
| Sub
deriving Show
genOps :: Int -> [[OP]]
genOps 1 = [[Sum], [Mul], [Sub]]
genOps n = [a : as | a <- [Sum, Mul, Sub], as <- genOps (n - 1)]
genPos :: Int -> Int -> [[Int]]
genPos m 1 = map (:[]) [-m..m - 1]
genPos m n = [a : as | a <- [-m..m - 1], as <- genPos m (n - 1)]
hash :: [Int] -> [OP] -> [Int] -> Int
hash poss op s = foldl applyOp s' (zip ss op)
where
applyOp v (n, Sum) = (v + n) `mod` 256
applyOp v (n, Mul) = (v * n) `mod` 256
applyOp v (n, Sub) = (v - n) `mod` 256
(s' : ss) = map (\p -> if p >= 0 then s !! p else s !! (l + p)) poss
l = length s
test = do
a <- liftM lines getContents
let w = minimum $ map length a
let opsNum = 4
let opsList = genOps (opsNum - 1)
let posList = genPos w opsNum
let target = length a
let wordsList = map (map fromEnum) a
let hashedSize = IS.size . IS.fromList
print $ length a
putStrLn . unlines . map show $ filter (\l -> fst l == length a) $ [(hs, (p, o)) | p <- posList, o <- opsList, let hs = hashedSize . map (hash p o) $ wordsList]
didIunderstand' = do
a <- liftM lines getContents
print $ length a
print . IS.size . IS.fromList . map (testHash . map fromEnum) $ a
where
testHash s = let l = length s in (
(s !! (l - 2) * s !! 1) + s !! (l - 1) - s !! 0
) `mod` 256