gameServer/OfficialServer/Glicko2.hs
author nemo
Wed, 14 Mar 2018 11:36:43 -0400
changeset 13201 25502e6b3e08
parent 11390 36e1bbb6ecea
permissions -rw-r--r--
While the intent was good, saving column width/sort was unfortunately not handling the addition of new columns and old configs were losing columns. If this is restored, it should have some check on column with invalidation of config.

{-
    Glicko2, as described in http://www.glicko.net/glicko/glicko2.pdf
-}

module OfficialServer.Glicko2 where

data RatingData = RatingData {
        ratingValue
        , rD
        , volatility :: Double
    }
data GameData = GameData {
        opponentRating :: RatingData,
        gameScore :: Double
    }

τ, ε :: Double
τ = 0.2
ε = 0.000001

g_φ :: Double -> Double
g_φ φ = 1 / sqrt (1 + 3 * φ^2 / pi^2)

calcE :: RatingData -> GameData -> (Double, Double, Double)
calcE oldRating (GameData oppRating s) = (
    1 / (1 + exp (g_φᵢ * (μᵢ - μ)))
    , g_φᵢ
    , s
    )
    where
        μ = (ratingValue oldRating - 1500) / 173.7178
        φ = rD oldRating / 173.7178
        μᵢ = (ratingValue oppRating - 1500) / 173.7178
        φᵢ = rD oppRating / 173.7178
        g_φᵢ = g_φ φᵢ


calcNewRating :: RatingData -> [GameData] -> (Int, RatingData)
calcNewRating oldRating [] = (0, RatingData (ratingValue oldRating) (173.7178 * sqrt (φ ^ 2 + σ ^ 2)) σ)
    where
        φ = rD oldRating / 173.7178
        σ = volatility oldRating

calcNewRating oldRating games = (length games, RatingData (173.7178 * μ' + 1500) (173.7178 * sqrt φ'sqr) σ')
    where
        _Es = map (calcE oldRating) games
        υ = 1 / sum (map υ_p _Es)
        υ_p (_Eᵢ, g_φᵢ, _) = g_φᵢ ^ 2 * _Eᵢ * (1 - _Eᵢ)
        _Δ = υ * part1
        part1 = sum (map _Δ_p _Es)
        _Δ_p (_Eᵢ, g_φᵢ, sᵢ) = g_φᵢ * (sᵢ - _Eᵢ)

        μ = (ratingValue oldRating - 1500) / 173.7178
        φ = rD oldRating / 173.7178
        σ = volatility oldRating

        a = log (σ ^ 2)
        f :: Double -> Double
        f x = exp x * (_Δ ^ 2 - φ ^ 2 - υ - exp x) / 2 / (φ ^ 2 + υ + exp x) ^ 2 - (x - a) / τ ^ 2

        _A = a
        _B = if _Δ ^ 2 > φ ^ 2 + υ then log (_Δ ^ 2 - φ ^ 2 - υ) else head . dropWhile ((>) 0 . f) . map (\k -> a - k * τ) $ [1 ..]
        fA = f _A
        fB = f _B
        σ' = (\(_A, _, _, _) -> exp (_A / 2)) . head . dropWhile (\(_A, _, _B, _) -> abs (_B - _A) > ε) $ iterate step5 (_A, fA, _B, fB)
        step5 (_A, fA, _B, fB) = let _C = _A + (_A - _B) * fA / (fB - fA); fC = f _C in
                                     if fC * fB < 0 then (_B, fB, _C, fC) else (_A, fA / 2, _C, fC)

        φ'sqr = 1 / (1 / (φ ^ 2 + σ' ^ 2) + 1 / υ)
        μ' = μ + φ'sqr * part1