misc/libphysfs/lzma/C/Compress/Lzma/LzmaDecodeSize.c
author Wuzzy <Wuzzy2@mail.ru>
Tue, 31 Oct 2017 19:27:23 +0100
changeset 12812 59cb9bd8331c
parent 12213 bb5522e88ab2
permissions -rw-r--r--
Fix Battialion script showing “Round 0” at start

/*
  LzmaDecodeSize.c
  LZMA Decoder (optimized for Size version)
  
  LZMA SDK 4.40 Copyright (c) 1999-2006 Igor Pavlov (2006-05-01)
  http://www.7-zip.org/

  LZMA SDK is licensed under two licenses:
  1) GNU Lesser General Public License (GNU LGPL)
  2) Common Public License (CPL)
  It means that you can select one of these two licenses and 
  follow rules of that license.

  SPECIAL EXCEPTION:
  Igor Pavlov, as the author of this code, expressly permits you to 
  statically or dynamically link your code (or bind by name) to the 
  interfaces of this file without subjecting your linked code to the 
  terms of the CPL or GNU LGPL. Any modifications or additions 
  to this file, however, are subject to the LGPL or CPL terms.
*/

#include "LzmaDecode.h"

#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)

#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5

typedef struct _CRangeDecoder
{
  const Byte *Buffer;
  const Byte *BufferLim;
  UInt32 Range;
  UInt32 Code;
  #ifdef _LZMA_IN_CB
  ILzmaInCallback *InCallback;
  int Result;
  #endif
  int ExtraBytes;
} CRangeDecoder;

Byte RangeDecoderReadByte(CRangeDecoder *rd)
{
  if (rd->Buffer == rd->BufferLim)
  {
    #ifdef _LZMA_IN_CB
    SizeT size;
    rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size);
    rd->BufferLim = rd->Buffer + size;
    if (size == 0)
    #endif
    {
      rd->ExtraBytes = 1;
      return 0xFF;
    }
  }
  return (*rd->Buffer++);
}

/* #define ReadByte (*rd->Buffer++) */
#define ReadByte (RangeDecoderReadByte(rd))

void RangeDecoderInit(CRangeDecoder *rd
  #ifndef _LZMA_IN_CB
    , const Byte *stream, SizeT bufferSize
  #endif
    )
{
  int i;
  #ifdef _LZMA_IN_CB
  rd->Buffer = rd->BufferLim = 0;
  #else
  rd->Buffer = stream;
  rd->BufferLim = stream + bufferSize;
  #endif
  rd->ExtraBytes = 0;
  rd->Code = 0;
  rd->Range = (0xFFFFFFFF);
  for(i = 0; i < 5; i++)
    rd->Code = (rd->Code << 8) | ReadByte;
}

#define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code;        
#define RC_FLUSH_VAR rd->Range = range; rd->Code = code;
#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }

UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits)
{
  RC_INIT_VAR
  UInt32 result = 0;
  int i;
  for (i = numTotalBits; i != 0; i--)
  {
    /* UInt32 t; */
    range >>= 1;

    result <<= 1;
    if (code >= range)
    {
      code -= range;
      result |= 1;
    }
    /*
    t = (code - range) >> 31;
    t &= 1;
    code -= range & (t - 1);
    result = (result + result) | (1 - t);
    */
    RC_NORMALIZE
  }
  RC_FLUSH_VAR
  return result;
}

int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd)
{
  UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob;
  if (rd->Code < bound)
  {
    rd->Range = bound;
    *prob += (kBitModelTotal - *prob) >> kNumMoveBits;
    if (rd->Range < kTopValue)
    {
      rd->Code = (rd->Code << 8) | ReadByte;
      rd->Range <<= 8;
    }
    return 0;
  }
  else
  {
    rd->Range -= bound;
    rd->Code -= bound;
    *prob -= (*prob) >> kNumMoveBits;
    if (rd->Range < kTopValue)
    {
      rd->Code = (rd->Code << 8) | ReadByte;
      rd->Range <<= 8;
    }
    return 1;
  }
}

#define RC_GET_BIT2(prob, mi, A0, A1) \
  UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
  if (code < bound) \
    { A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
  else \
    { A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
  RC_NORMALIZE

#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)               

int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
  int mi = 1;
  int i;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  for(i = numLevels; i != 0; i--)
  {
    #ifdef _LZMA_LOC_OPT
    CProb *prob = probs + mi;
    RC_GET_BIT(prob, mi)
    #else
    mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd);
    #endif
  }
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return mi - (1 << numLevels);
}

int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
  int mi = 1;
  int i;
  int symbol = 0;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  for(i = 0; i < numLevels; i++)
  {
    #ifdef _LZMA_LOC_OPT
    CProb *prob = probs + mi;
    RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
    #else
    int bit = RangeDecoderBitDecode(probs + mi, rd);
    mi = mi + mi + bit;
    symbol |= (bit << i);
    #endif
  }
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return symbol;
}

Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd)
{ 
  int symbol = 1;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  do
  {
    #ifdef _LZMA_LOC_OPT
    CProb *prob = probs + symbol;
    RC_GET_BIT(prob, symbol)
    #else
    symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
    #endif
  }
  while (symbol < 0x100);
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return symbol;
}

Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte)
{ 
  int symbol = 1;
  #ifdef _LZMA_LOC_OPT
  RC_INIT_VAR
  #endif
  do
  {
    int bit;
    int matchBit = (matchByte >> 7) & 1;
    matchByte <<= 1;
    #ifdef _LZMA_LOC_OPT
    {
      CProb *prob = probs + 0x100 + (matchBit << 8) + symbol;
      RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
    }
    #else
    bit = RangeDecoderBitDecode(probs + 0x100 + (matchBit << 8) + symbol, rd);
    symbol = (symbol << 1) | bit;
    #endif
    if (matchBit != bit)
    {
      while (symbol < 0x100)
      {
        #ifdef _LZMA_LOC_OPT
        CProb *prob = probs + symbol;
        RC_GET_BIT(prob, symbol)
        #else
        symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
        #endif
      }
      break;
    }
  }
  while (symbol < 0x100);
  #ifdef _LZMA_LOC_OPT
  RC_FLUSH_VAR
  #endif
  return symbol;
}

#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)

#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)

#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols) 

int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState)
{
  if(RangeDecoderBitDecode(p + LenChoice, rd) == 0)
    return RangeDecoderBitTreeDecode(p + LenLow +
        (posState << kLenNumLowBits), kLenNumLowBits, rd);
  if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0)
    return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
        (posState << kLenNumMidBits), kLenNumMidBits, rd);
  return kLenNumLowSymbols + kLenNumMidSymbols + 
      RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd);
}

#define kNumStates 12
#define kNumLitStates 7

#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))

#define kNumPosSlotBits 6
#define kNumLenToPosStates 4

#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)

#define kMatchMinLen 2

#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)

#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif

int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size)
{
  unsigned char prop0;
  if (size < LZMA_PROPERTIES_SIZE)
    return LZMA_RESULT_DATA_ERROR;
  prop0 = propsData[0];
  if (prop0 >= (9 * 5 * 5))
    return LZMA_RESULT_DATA_ERROR;
  {
    for (propsRes->pb = 0; prop0 >= (9 * 5); propsRes->pb++, prop0 -= (9 * 5));
    for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9);
    propsRes->lc = prop0;
    /*
    unsigned char remainder = (unsigned char)(prop0 / 9);
    propsRes->lc = prop0 % 9;
    propsRes->pb = remainder / 5;
    propsRes->lp = remainder % 5;
    */
  }

  #ifdef _LZMA_OUT_READ
  {
    int i;
    propsRes->DictionarySize = 0;
    for (i = 0; i < 4; i++)
      propsRes->DictionarySize += (UInt32)(propsData[1 + i]) << (i * 8);
    if (propsRes->DictionarySize == 0)
      propsRes->DictionarySize = 1;
  }
  #endif
  return LZMA_RESULT_OK;
}

#define kLzmaStreamWasFinishedId (-1)

int LzmaDecode(CLzmaDecoderState *vs,
    #ifdef _LZMA_IN_CB
    ILzmaInCallback *InCallback,
    #else
    const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed,
    #endif
    unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed)
{
  CProb *p = vs->Probs;
  SizeT nowPos = 0;
  Byte previousByte = 0;
  UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1;
  UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1;
  int lc = vs->Properties.lc;
  CRangeDecoder rd;

  #ifdef _LZMA_OUT_READ
  
  int state = vs->State;
  UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
  int len = vs->RemainLen;
  UInt32 globalPos = vs->GlobalPos;
  UInt32 distanceLimit = vs->DistanceLimit;

  Byte *dictionary = vs->Dictionary;
  UInt32 dictionarySize = vs->Properties.DictionarySize;
  UInt32 dictionaryPos = vs->DictionaryPos;

  Byte tempDictionary[4];

  rd.Range = vs->Range;
  rd.Code = vs->Code;
  #ifdef _LZMA_IN_CB
  rd.InCallback = InCallback;
  rd.Buffer = vs->Buffer;
  rd.BufferLim = vs->BufferLim;
  #else
  rd.Buffer = inStream;
  rd.BufferLim = inStream + inSize;
  #endif

  #ifndef _LZMA_IN_CB
  *inSizeProcessed = 0;
  #endif
  *outSizeProcessed = 0;
  if (len == kLzmaStreamWasFinishedId)
    return LZMA_RESULT_OK;

  if (dictionarySize == 0)
  {
    dictionary = tempDictionary;
    dictionarySize = 1;
    tempDictionary[0] = vs->TempDictionary[0];
  }

  if (len == kLzmaNeedInitId)
  {
    {
      UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp));
      UInt32 i;
      for (i = 0; i < numProbs; i++)
        p[i] = kBitModelTotal >> 1; 
      rep0 = rep1 = rep2 = rep3 = 1;
      state = 0;
      globalPos = 0;
      distanceLimit = 0;
      dictionaryPos = 0;
      dictionary[dictionarySize - 1] = 0;
      RangeDecoderInit(&rd
          #ifndef _LZMA_IN_CB
          , inStream, inSize
          #endif
          );
      #ifdef _LZMA_IN_CB
      if (rd.Result != LZMA_RESULT_OK)
        return rd.Result;
      #endif
      if (rd.ExtraBytes != 0)
        return LZMA_RESULT_DATA_ERROR;
    }
    len = 0;
  }
  while(len != 0 && nowPos < outSize)
  {
    UInt32 pos = dictionaryPos - rep0;
    if (pos >= dictionarySize)
      pos += dictionarySize;
    outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
    if (++dictionaryPos == dictionarySize)
      dictionaryPos = 0;
    len--;
  }
  if (dictionaryPos == 0)
    previousByte = dictionary[dictionarySize - 1];
  else
    previousByte = dictionary[dictionaryPos - 1];

  #ifdef _LZMA_IN_CB
  rd.Result = LZMA_RESULT_OK;
  #endif
  rd.ExtraBytes = 0;

  #else /* if !_LZMA_OUT_READ */

  int state = 0;
  UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
  int len = 0;

  #ifndef _LZMA_IN_CB
  *inSizeProcessed = 0;
  #endif
  *outSizeProcessed = 0;

  {
    UInt32 i;
    UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp));
    for (i = 0; i < numProbs; i++)
      p[i] = kBitModelTotal >> 1;
  }
  
  #ifdef _LZMA_IN_CB
  rd.InCallback = InCallback;
  #endif
  RangeDecoderInit(&rd
      #ifndef _LZMA_IN_CB
      , inStream, inSize
      #endif
      );

  #ifdef _LZMA_IN_CB
  if (rd.Result != LZMA_RESULT_OK)
    return rd.Result;
  #endif
  if (rd.ExtraBytes != 0)
    return LZMA_RESULT_DATA_ERROR;

  #endif /* _LZMA_OUT_READ */


  while(nowPos < outSize)
  {
    int posState = (int)(
        (nowPos 
        #ifdef _LZMA_OUT_READ
        + globalPos
        #endif
        )
        & posStateMask);
    #ifdef _LZMA_IN_CB
    if (rd.Result != LZMA_RESULT_OK)
      return rd.Result;
    #endif
    if (rd.ExtraBytes != 0)
      return LZMA_RESULT_DATA_ERROR;
    if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0)
    {
      CProb *probs = p + Literal + (LZMA_LIT_SIZE * 
        (((
        (nowPos 
        #ifdef _LZMA_OUT_READ
        + globalPos
        #endif
        )
        & literalPosMask) << lc) + (previousByte >> (8 - lc))));

      if (state >= kNumLitStates)
      {
        Byte matchByte;
        #ifdef _LZMA_OUT_READ
        UInt32 pos = dictionaryPos - rep0;
        if (pos >= dictionarySize)
          pos += dictionarySize;
        matchByte = dictionary[pos];
        #else
        matchByte = outStream[nowPos - rep0];
        #endif
        previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte);
      }
      else
        previousByte = LzmaLiteralDecode(probs, &rd);
      outStream[nowPos++] = previousByte;
      #ifdef _LZMA_OUT_READ
      if (distanceLimit < dictionarySize)
        distanceLimit++;

      dictionary[dictionaryPos] = previousByte;
      if (++dictionaryPos == dictionarySize)
        dictionaryPos = 0;
      #endif
      if (state < 4) state = 0;
      else if (state < 10) state -= 3;
      else state -= 6;
    }
    else             
    {
      if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1)
      {
        if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0)
        {
          if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0)
          {
            #ifdef _LZMA_OUT_READ
            UInt32 pos;
            #endif
      
            #ifdef _LZMA_OUT_READ
            if (distanceLimit == 0)
            #else
            if (nowPos == 0)
            #endif
              return LZMA_RESULT_DATA_ERROR;

            state = state < 7 ? 9 : 11;
            #ifdef _LZMA_OUT_READ
            pos = dictionaryPos - rep0;
            if (pos >= dictionarySize)
              pos += dictionarySize;
            previousByte = dictionary[pos];
            dictionary[dictionaryPos] = previousByte;
            if (++dictionaryPos == dictionarySize)
              dictionaryPos = 0;
            #else
            previousByte = outStream[nowPos - rep0];
            #endif
            outStream[nowPos++] = previousByte;

            #ifdef _LZMA_OUT_READ
            if (distanceLimit < dictionarySize)
              distanceLimit++;
            #endif
            continue;
          }
        }
        else
        {
          UInt32 distance;
          if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0)
            distance = rep1;
          else 
          {
            if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0)
              distance = rep2;
            else
            {
              distance = rep3;
              rep3 = rep2;
            }
            rep2 = rep1;
          }
          rep1 = rep0;
          rep0 = distance;
        }
        len = LzmaLenDecode(p + RepLenCoder, &rd, posState);
        state = state < 7 ? 8 : 11;
      }
      else
      {
        int posSlot;
        rep3 = rep2;
        rep2 = rep1;
        rep1 = rep0;
        state = state < 7 ? 7 : 10;
        len = LzmaLenDecode(p + LenCoder, &rd, posState);
        posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << 
            kNumPosSlotBits), kNumPosSlotBits, &rd);
        if (posSlot >= kStartPosModelIndex)
        {
          int numDirectBits = ((posSlot >> 1) - 1);
          rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
          if (posSlot < kEndPosModelIndex)
          {
            rep0 += RangeDecoderReverseBitTreeDecode(
                p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd);
          }
          else
          {
            rep0 += RangeDecoderDecodeDirectBits(&rd, 
                numDirectBits - kNumAlignBits) << kNumAlignBits;
            rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd);
          }
        }
        else
          rep0 = posSlot;
        if (++rep0 == (UInt32)(0))
        {
          /* it's for stream version */
          len = kLzmaStreamWasFinishedId;
          break;
        }
      }

      len += kMatchMinLen;
      #ifdef _LZMA_OUT_READ
      if (rep0 > distanceLimit) 
      #else
      if (rep0 > nowPos)
      #endif
        return LZMA_RESULT_DATA_ERROR;

      #ifdef _LZMA_OUT_READ
      if (dictionarySize - distanceLimit > (UInt32)len)
        distanceLimit += len;
      else
        distanceLimit = dictionarySize;
      #endif

      do
      {
        #ifdef _LZMA_OUT_READ
        UInt32 pos = dictionaryPos - rep0;
        if (pos >= dictionarySize)
          pos += dictionarySize;
        previousByte = dictionary[pos];
        dictionary[dictionaryPos] = previousByte;
        if (++dictionaryPos == dictionarySize)
          dictionaryPos = 0;
        #else
        previousByte = outStream[nowPos - rep0];
        #endif
        len--;
        outStream[nowPos++] = previousByte;
      }
      while(len != 0 && nowPos < outSize);
    }
  }


  #ifdef _LZMA_OUT_READ
  vs->Range = rd.Range;
  vs->Code = rd.Code;
  vs->DictionaryPos = dictionaryPos;
  vs->GlobalPos = globalPos + (UInt32)nowPos;
  vs->DistanceLimit = distanceLimit;
  vs->Reps[0] = rep0;
  vs->Reps[1] = rep1;
  vs->Reps[2] = rep2;
  vs->Reps[3] = rep3;
  vs->State = state;
  vs->RemainLen = len;
  vs->TempDictionary[0] = tempDictionary[0];
  #endif

  #ifdef _LZMA_IN_CB
  vs->Buffer = rd.Buffer;
  vs->BufferLim = rd.BufferLim;
  #else
  *inSizeProcessed = (SizeT)(rd.Buffer - inStream);
  #endif
  *outSizeProcessed = nowPos;
  return LZMA_RESULT_OK;
}