Tempoary (!!!) workaround for incorrect key combination description in frontend
This workaround fixes the incorrect string while preserving translations and the 1.0.0 string freeze.
Remember to revert this commit and fix the string in binds.cpp after the 1.0.0 release!
(*
* Hedgewars, a free turn based strategy game
* Copyright (c) 2004-2012 Andrey Korotaev <unC0Rr@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
{$INCLUDE "options.inc"}
unit uMatrix;
interface
uses uTypes {$IFNDEF PAS2C}, gl{$ENDIF};
const
MATRIX_MODELVIEW:Integer = 0;
MATRIX_PROJECTION:Integer = 1;
procedure MatrixLoadIdentity(out Result: TMatrix4x4f);
procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f);
procedure hglMatrixMode(t: Integer);
procedure hglLoadIdentity();
procedure hglPushMatrix();
procedure hglPopMatrix();
procedure hglMVP(var res : TMatrix4x4f);
procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat);
procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat);
procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat);
procedure initModule();
procedure freeModule();
implementation
uses uDebug;
const
MATRIX_STACK_SIZE = 10;
type
TMatrixStack = record
top:Integer;
stack: array[0..9] of TMatrix4x4f;
end;
var
MatrixStacks : array[0..1] of TMatrixStack;
CurMatrix: integer;
procedure MatrixLoadIdentity(out Result: TMatrix4x4f);
begin
Result[0,0]:= 1.0; Result[1,0]:=0.0; Result[2,0]:=0.0; Result[3,0]:=0.0;
Result[0,1]:= 0.0; Result[1,1]:=1.0; Result[2,1]:=0.0; Result[3,1]:=0.0;
Result[0,2]:= 0.0; Result[1,2]:=0.0; Result[2,2]:=1.0; Result[3,2]:=0.0;
Result[0,3]:= 0.0; Result[1,3]:=0.0; Result[2,3]:=0.0; Result[3,3]:=1.0;
end;
procedure hglMatrixMode(t: Integer);
begin
CurMatrix := t;
end;
procedure hglLoadIdentity();
begin
MatrixLoadIdentity(MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top]);
end;
procedure hglScalef(x: GLfloat; y: GLfloat; z: GLfloat);
var
m:TMatrix4x4f;
t:TMatrix4x4f;
begin
m[0,0]:=x;m[1,0]:=0;m[2,0]:=0;m[3,0]:=0;
m[0,1]:=0;m[1,1]:=y;m[2,1]:=0;m[3,1]:=0;
m[0,2]:=0;m[1,2]:=0;m[2,2]:=z;m[3,2]:=0;
m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;
MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;
procedure hglTranslatef(x: GLfloat; y: GLfloat; z: GLfloat);
var
m:TMatrix4x4f;
t:TMatrix4x4f;
begin
m[0,0]:=1;m[1,0]:=0;m[2,0]:=0;m[3,0]:=x;
m[0,1]:=0;m[1,1]:=1;m[2,1]:=0;m[3,1]:=y;
m[0,2]:=0;m[1,2]:=0;m[2,2]:=1;m[3,2]:=z;
m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;
MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;
procedure hglRotatef(a:GLfloat; x:GLfloat; y:GLfloat; z:GLfloat);
var
m:TMatrix4x4f;
t:TMatrix4x4f;
c:GLfloat;
s:GLfloat;
xn, yn, zn:GLfloat;
l:GLfloat;
begin
a:=a * 3.14159265368 / 180;
c:=cos(a);
s:=sin(a);
l := 1.0 / sqrt(x * x + y * y + z * z);
xn := x * l;
yn := y * l;
zn := z * l;
m[0,0]:=c + xn * xn * (1 - c);
m[1,0]:=xn * yn * (1 - c) - zn * s;
m[2,0]:=xn * zn * (1 - c) + yn * s;
m[3,0]:=0;
m[0,1]:=yn * xn * (1 - c) + zn * s;
m[1,1]:=c + yn * yn * (1 - c);
m[2,1]:=yn * zn * (1 - c) - xn * s;
m[3,1]:=0;
m[0,2]:=zn * xn * (1 - c) - yn * s;
m[1,2]:=zn * yn * (1 - c) + xn * s;
m[2,2]:=c + zn * zn * (1 - c);
m[3,2]:=0;
m[0,3]:=0;m[1,3]:=0;m[2,3]:=0;m[3,3]:=1;
MatrixMultiply(t, MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top], m);
MatrixStacks[CurMatrix].stack[MatrixStacks[CurMatrix].top] := t;
end;
procedure hglMVP(var res: TMatrix4x4f);
begin
MatrixMultiply(res,
MatrixStacks[MATRIX_PROJECTION].stack[MatrixStacks[MATRIX_PROJECTION].top],
MatrixStacks[MATRIX_MODELVIEW].stack[MatrixStacks[MATRIX_MODELVIEW].top]);
end;
procedure hglPushMatrix();
var
t: Integer;
begin
t := MatrixStacks[CurMatrix].top;
MatrixStacks[CurMatrix].stack[t + 1] := MatrixStacks[CurMatrix].stack[t];
inc(t);
MatrixStacks[CurMatrix].top := t;
end;
procedure hglPopMatrix();
var
t: Integer;
begin
t := MatrixStacks[CurMatrix].top;
dec(t);
MatrixStacks[CurMatrix].top := t;
end;
procedure initModule();
begin
MatrixStacks[MATRIX_MODELVIEW].top := 0;
MatrixStacks[MATRIX_Projection].top := 0;
MatrixLoadIdentity(MatrixStacks[MATRIX_MODELVIEW].stack[0]);
MatrixLoadIdentity(MatrixStacks[MATRIX_PROJECTION].stack[0]);
end;
procedure freeModule();
begin
end;
procedure MatrixMultiply(out Result: TMatrix4x4f; const lhs, rhs: TMatrix4x4f);
var
test: TMatrix4x4f;
i, j: Integer;
error: boolean;
begin
Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3];
Result[0,1]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3];
Result[0,2]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3];
Result[0,3]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3];
Result[1,0]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3];
Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3];
Result[1,2]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3];
Result[1,3]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3];
Result[2,0]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3];
Result[2,1]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3];
Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3];
Result[2,3]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3];
Result[3,0]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3];
Result[3,1]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3];
Result[3,2]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3];
Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3];
{
Result[0,0]:=lhs[0,0]*rhs[0,0] + lhs[1,0]*rhs[0,1] + lhs[2,0]*rhs[0,2] + lhs[3,0]*rhs[0,3];
Result[0,1]:=lhs[0,0]*rhs[1,0] + lhs[1,0]*rhs[1,1] + lhs[2,0]*rhs[1,2] + lhs[3,0]*rhs[1,3];
Result[0,2]:=lhs[0,0]*rhs[2,0] + lhs[1,0]*rhs[2,1] + lhs[2,0]*rhs[2,2] + lhs[3,0]*rhs[2,3];
Result[0,3]:=lhs[0,0]*rhs[3,0] + lhs[1,0]*rhs[3,1] + lhs[2,0]*rhs[3,2] + lhs[3,0]*rhs[3,3];
Result[1,0]:=lhs[0,1]*rhs[0,0] + lhs[1,1]*rhs[0,1] + lhs[2,1]*rhs[0,2] + lhs[3,1]*rhs[0,3];
Result[1,1]:=lhs[0,1]*rhs[1,0] + lhs[1,1]*rhs[1,1] + lhs[2,1]*rhs[1,2] + lhs[3,1]*rhs[1,3];
Result[1,2]:=lhs[0,1]*rhs[2,0] + lhs[1,1]*rhs[2,1] + lhs[2,1]*rhs[2,2] + lhs[3,1]*rhs[2,3];
Result[1,3]:=lhs[0,1]*rhs[3,0] + lhs[1,1]*rhs[3,1] + lhs[2,1]*rhs[3,2] + lhs[3,1]*rhs[3,3];
Result[2,0]:=lhs[0,2]*rhs[0,0] + lhs[1,2]*rhs[0,1] + lhs[2,2]*rhs[0,2] + lhs[3,2]*rhs[0,3];
Result[2,1]:=lhs[0,2]*rhs[1,0] + lhs[1,2]*rhs[1,1] + lhs[2,2]*rhs[1,2] + lhs[3,2]*rhs[1,3];
Result[2,2]:=lhs[0,2]*rhs[2,0] + lhs[1,2]*rhs[2,1] + lhs[2,2]*rhs[2,2] + lhs[3,2]*rhs[2,3];
Result[2,3]:=lhs[0,2]*rhs[3,0] + lhs[1,2]*rhs[3,1] + lhs[2,2]*rhs[3,2] + lhs[3,2]*rhs[3,3];
Result[3,0]:=lhs[0,3]*rhs[0,0] + lhs[1,3]*rhs[0,1] + lhs[2,3]*rhs[0,2] + lhs[3,3]*rhs[0,3];
Result[3,1]:=lhs[0,3]*rhs[1,0] + lhs[1,3]*rhs[1,1] + lhs[2,3]*rhs[1,2] + lhs[3,3]*rhs[1,3];
Result[3,2]:=lhs[0,3]*rhs[2,0] + lhs[1,3]*rhs[2,1] + lhs[2,3]*rhs[2,2] + lhs[3,3]*rhs[2,3];
Result[3,3]:=lhs[0,3]*rhs[3,0] + lhs[1,3]*rhs[3,1] + lhs[2,3]*rhs[3,2] + lhs[3,3]*rhs[3,3];
}
glPushMatrix;
glLoadMatrixf(@lhs[0, 0]);
glMultMatrixf(@rhs[0, 0]);
glGetFloatv(GL_MODELVIEW_MATRIX, @test[0, 0]);
glPopMatrix;
error:=false;
for i:=0 to 3 do
for j:=0 to 3 do
if Abs(test[i, j] - Result[i, j]) > 0.000001 then
error:=true;
{$IFNDEF PAS2C}
if error then
begin
writeln('shall:');
for i:=0 to 3 do
begin
for j:=0 to 3 do
write(test[i, j]);
writeln;
end;
writeln('is:');
for i:=0 to 3 do
begin
for j:=0 to 3 do
write(Result[i, j]);
writeln;
end;
checkFails(false, 'Error in matrix multiplication?!', true);
end;
{$ENDIF}
end;
end.