5172
|
1 |
/***************************************************************************/
|
|
2 |
/* */
|
|
3 |
/* ftbbox.c */
|
|
4 |
/* */
|
|
5 |
/* FreeType bbox computation (body). */
|
|
6 |
/* */
|
|
7 |
/* Copyright 1996-2001, 2002, 2004, 2006, 2010 by */
|
|
8 |
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
9 |
/* */
|
|
10 |
/* This file is part of the FreeType project, and may only be used */
|
|
11 |
/* modified and distributed under the terms of the FreeType project */
|
|
12 |
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
13 |
/* this file you indicate that you have read the license and */
|
|
14 |
/* understand and accept it fully. */
|
|
15 |
/* */
|
|
16 |
/***************************************************************************/
|
|
17 |
|
|
18 |
|
|
19 |
/*************************************************************************/
|
|
20 |
/* */
|
|
21 |
/* This component has a _single_ role: to compute exact outline bounding */
|
|
22 |
/* boxes. */
|
|
23 |
/* */
|
|
24 |
/*************************************************************************/
|
|
25 |
|
|
26 |
|
|
27 |
#include <ft2build.h>
|
|
28 |
#include FT_BBOX_H
|
|
29 |
#include FT_IMAGE_H
|
|
30 |
#include FT_OUTLINE_H
|
|
31 |
#include FT_INTERNAL_CALC_H
|
|
32 |
#include FT_INTERNAL_OBJECTS_H
|
|
33 |
|
|
34 |
|
|
35 |
typedef struct TBBox_Rec_
|
|
36 |
{
|
|
37 |
FT_Vector last;
|
|
38 |
FT_BBox bbox;
|
|
39 |
|
|
40 |
} TBBox_Rec;
|
|
41 |
|
|
42 |
|
|
43 |
/*************************************************************************/
|
|
44 |
/* */
|
|
45 |
/* <Function> */
|
|
46 |
/* BBox_Move_To */
|
|
47 |
/* */
|
|
48 |
/* <Description> */
|
|
49 |
/* This function is used as a `move_to' and `line_to' emitter during */
|
|
50 |
/* FT_Outline_Decompose(). It simply records the destination point */
|
|
51 |
/* in `user->last'; no further computations are necessary since we */
|
|
52 |
/* use the cbox as the starting bbox which must be refined. */
|
|
53 |
/* */
|
|
54 |
/* <Input> */
|
|
55 |
/* to :: A pointer to the destination vector. */
|
|
56 |
/* */
|
|
57 |
/* <InOut> */
|
|
58 |
/* user :: A pointer to the current walk context. */
|
|
59 |
/* */
|
|
60 |
/* <Return> */
|
|
61 |
/* Always 0. Needed for the interface only. */
|
|
62 |
/* */
|
|
63 |
static int
|
|
64 |
BBox_Move_To( FT_Vector* to,
|
|
65 |
TBBox_Rec* user )
|
|
66 |
{
|
|
67 |
user->last = *to;
|
|
68 |
|
|
69 |
return 0;
|
|
70 |
}
|
|
71 |
|
|
72 |
|
|
73 |
#define CHECK_X( p, bbox ) \
|
|
74 |
( p->x < bbox.xMin || p->x > bbox.xMax )
|
|
75 |
|
|
76 |
#define CHECK_Y( p, bbox ) \
|
|
77 |
( p->y < bbox.yMin || p->y > bbox.yMax )
|
|
78 |
|
|
79 |
|
|
80 |
/*************************************************************************/
|
|
81 |
/* */
|
|
82 |
/* <Function> */
|
|
83 |
/* BBox_Conic_Check */
|
|
84 |
/* */
|
|
85 |
/* <Description> */
|
|
86 |
/* Finds the extrema of a 1-dimensional conic Bezier curve and update */
|
|
87 |
/* a bounding range. This version uses direct computation, as it */
|
|
88 |
/* doesn't need square roots. */
|
|
89 |
/* */
|
|
90 |
/* <Input> */
|
|
91 |
/* y1 :: The start coordinate. */
|
|
92 |
/* */
|
|
93 |
/* y2 :: The coordinate of the control point. */
|
|
94 |
/* */
|
|
95 |
/* y3 :: The end coordinate. */
|
|
96 |
/* */
|
|
97 |
/* <InOut> */
|
|
98 |
/* min :: The address of the current minimum. */
|
|
99 |
/* */
|
|
100 |
/* max :: The address of the current maximum. */
|
|
101 |
/* */
|
|
102 |
static void
|
|
103 |
BBox_Conic_Check( FT_Pos y1,
|
|
104 |
FT_Pos y2,
|
|
105 |
FT_Pos y3,
|
|
106 |
FT_Pos* min,
|
|
107 |
FT_Pos* max )
|
|
108 |
{
|
|
109 |
if ( y1 <= y3 && y2 == y1 ) /* flat arc */
|
|
110 |
goto Suite;
|
|
111 |
|
|
112 |
if ( y1 < y3 )
|
|
113 |
{
|
|
114 |
if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */
|
|
115 |
goto Suite;
|
|
116 |
}
|
|
117 |
else
|
|
118 |
{
|
|
119 |
if ( y2 >= y3 && y2 <= y1 ) /* descending arc */
|
|
120 |
{
|
|
121 |
y2 = y1;
|
|
122 |
y1 = y3;
|
|
123 |
y3 = y2;
|
|
124 |
goto Suite;
|
|
125 |
}
|
|
126 |
}
|
|
127 |
|
|
128 |
y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 );
|
|
129 |
|
|
130 |
Suite:
|
|
131 |
if ( y1 < *min ) *min = y1;
|
|
132 |
if ( y3 > *max ) *max = y3;
|
|
133 |
}
|
|
134 |
|
|
135 |
|
|
136 |
/*************************************************************************/
|
|
137 |
/* */
|
|
138 |
/* <Function> */
|
|
139 |
/* BBox_Conic_To */
|
|
140 |
/* */
|
|
141 |
/* <Description> */
|
|
142 |
/* This function is used as a `conic_to' emitter during */
|
|
143 |
/* FT_Outline_Decompose(). It checks a conic Bezier curve with the */
|
|
144 |
/* current bounding box, and computes its extrema if necessary to */
|
|
145 |
/* update it. */
|
|
146 |
/* */
|
|
147 |
/* <Input> */
|
|
148 |
/* control :: A pointer to a control point. */
|
|
149 |
/* */
|
|
150 |
/* to :: A pointer to the destination vector. */
|
|
151 |
/* */
|
|
152 |
/* <InOut> */
|
|
153 |
/* user :: The address of the current walk context. */
|
|
154 |
/* */
|
|
155 |
/* <Return> */
|
|
156 |
/* Always 0. Needed for the interface only. */
|
|
157 |
/* */
|
|
158 |
/* <Note> */
|
|
159 |
/* In the case of a non-monotonous arc, we compute directly the */
|
|
160 |
/* extremum coordinates, as it is sufficiently fast. */
|
|
161 |
/* */
|
|
162 |
static int
|
|
163 |
BBox_Conic_To( FT_Vector* control,
|
|
164 |
FT_Vector* to,
|
|
165 |
TBBox_Rec* user )
|
|
166 |
{
|
|
167 |
/* we don't need to check `to' since it is always an `on' point, thus */
|
|
168 |
/* within the bbox */
|
|
169 |
|
|
170 |
if ( CHECK_X( control, user->bbox ) )
|
|
171 |
BBox_Conic_Check( user->last.x,
|
|
172 |
control->x,
|
|
173 |
to->x,
|
|
174 |
&user->bbox.xMin,
|
|
175 |
&user->bbox.xMax );
|
|
176 |
|
|
177 |
if ( CHECK_Y( control, user->bbox ) )
|
|
178 |
BBox_Conic_Check( user->last.y,
|
|
179 |
control->y,
|
|
180 |
to->y,
|
|
181 |
&user->bbox.yMin,
|
|
182 |
&user->bbox.yMax );
|
|
183 |
|
|
184 |
user->last = *to;
|
|
185 |
|
|
186 |
return 0;
|
|
187 |
}
|
|
188 |
|
|
189 |
|
|
190 |
/*************************************************************************/
|
|
191 |
/* */
|
|
192 |
/* <Function> */
|
|
193 |
/* BBox_Cubic_Check */
|
|
194 |
/* */
|
|
195 |
/* <Description> */
|
|
196 |
/* Finds the extrema of a 1-dimensional cubic Bezier curve and */
|
|
197 |
/* updates a bounding range. This version uses splitting because we */
|
|
198 |
/* don't want to use square roots and extra accuracy. */
|
|
199 |
/* */
|
|
200 |
/* <Input> */
|
|
201 |
/* p1 :: The start coordinate. */
|
|
202 |
/* */
|
|
203 |
/* p2 :: The coordinate of the first control point. */
|
|
204 |
/* */
|
|
205 |
/* p3 :: The coordinate of the second control point. */
|
|
206 |
/* */
|
|
207 |
/* p4 :: The end coordinate. */
|
|
208 |
/* */
|
|
209 |
/* <InOut> */
|
|
210 |
/* min :: The address of the current minimum. */
|
|
211 |
/* */
|
|
212 |
/* max :: The address of the current maximum. */
|
|
213 |
/* */
|
|
214 |
|
|
215 |
#if 0
|
|
216 |
|
|
217 |
static void
|
|
218 |
BBox_Cubic_Check( FT_Pos p1,
|
|
219 |
FT_Pos p2,
|
|
220 |
FT_Pos p3,
|
|
221 |
FT_Pos p4,
|
|
222 |
FT_Pos* min,
|
|
223 |
FT_Pos* max )
|
|
224 |
{
|
|
225 |
FT_Pos stack[32*3 + 1], *arc;
|
|
226 |
|
|
227 |
|
|
228 |
arc = stack;
|
|
229 |
|
|
230 |
arc[0] = p1;
|
|
231 |
arc[1] = p2;
|
|
232 |
arc[2] = p3;
|
|
233 |
arc[3] = p4;
|
|
234 |
|
|
235 |
do
|
|
236 |
{
|
|
237 |
FT_Pos y1 = arc[0];
|
|
238 |
FT_Pos y2 = arc[1];
|
|
239 |
FT_Pos y3 = arc[2];
|
|
240 |
FT_Pos y4 = arc[3];
|
|
241 |
|
|
242 |
|
|
243 |
if ( y1 == y4 )
|
|
244 |
{
|
|
245 |
if ( y1 == y2 && y1 == y3 ) /* flat */
|
|
246 |
goto Test;
|
|
247 |
}
|
|
248 |
else if ( y1 < y4 )
|
|
249 |
{
|
|
250 |
if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* ascending */
|
|
251 |
goto Test;
|
|
252 |
}
|
|
253 |
else
|
|
254 |
{
|
|
255 |
if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* descending */
|
|
256 |
{
|
|
257 |
y2 = y1;
|
|
258 |
y1 = y4;
|
|
259 |
y4 = y2;
|
|
260 |
goto Test;
|
|
261 |
}
|
|
262 |
}
|
|
263 |
|
|
264 |
/* unknown direction -- split the arc in two */
|
|
265 |
arc[6] = y4;
|
|
266 |
arc[1] = y1 = ( y1 + y2 ) / 2;
|
|
267 |
arc[5] = y4 = ( y4 + y3 ) / 2;
|
|
268 |
y2 = ( y2 + y3 ) / 2;
|
|
269 |
arc[2] = y1 = ( y1 + y2 ) / 2;
|
|
270 |
arc[4] = y4 = ( y4 + y2 ) / 2;
|
|
271 |
arc[3] = ( y1 + y4 ) / 2;
|
|
272 |
|
|
273 |
arc += 3;
|
|
274 |
goto Suite;
|
|
275 |
|
|
276 |
Test:
|
|
277 |
if ( y1 < *min ) *min = y1;
|
|
278 |
if ( y4 > *max ) *max = y4;
|
|
279 |
arc -= 3;
|
|
280 |
|
|
281 |
Suite:
|
|
282 |
;
|
|
283 |
} while ( arc >= stack );
|
|
284 |
}
|
|
285 |
|
|
286 |
#else
|
|
287 |
|
|
288 |
static void
|
|
289 |
test_cubic_extrema( FT_Pos y1,
|
|
290 |
FT_Pos y2,
|
|
291 |
FT_Pos y3,
|
|
292 |
FT_Pos y4,
|
|
293 |
FT_Fixed u,
|
|
294 |
FT_Pos* min,
|
|
295 |
FT_Pos* max )
|
|
296 |
{
|
|
297 |
/* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
|
|
298 |
FT_Pos b = y3 - 2*y2 + y1;
|
|
299 |
FT_Pos c = y2 - y1;
|
|
300 |
FT_Pos d = y1;
|
|
301 |
FT_Pos y;
|
|
302 |
FT_Fixed uu;
|
|
303 |
|
|
304 |
FT_UNUSED ( y4 );
|
|
305 |
|
|
306 |
|
|
307 |
/* The polynomial is */
|
|
308 |
/* */
|
|
309 |
/* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
|
|
310 |
/* */
|
|
311 |
/* dP/dx = 3a*x^2 + 6b*x + 3c . */
|
|
312 |
/* */
|
|
313 |
/* However, we also have */
|
|
314 |
/* */
|
|
315 |
/* dP/dx(u) = 0 , */
|
|
316 |
/* */
|
|
317 |
/* which implies by subtraction that */
|
|
318 |
/* */
|
|
319 |
/* P(u) = b*u^2 + 2c*u + d . */
|
|
320 |
|
|
321 |
if ( u > 0 && u < 0x10000L )
|
|
322 |
{
|
|
323 |
uu = FT_MulFix( u, u );
|
|
324 |
y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );
|
|
325 |
|
|
326 |
if ( y < *min ) *min = y;
|
|
327 |
if ( y > *max ) *max = y;
|
|
328 |
}
|
|
329 |
}
|
|
330 |
|
|
331 |
|
|
332 |
static void
|
|
333 |
BBox_Cubic_Check( FT_Pos y1,
|
|
334 |
FT_Pos y2,
|
|
335 |
FT_Pos y3,
|
|
336 |
FT_Pos y4,
|
|
337 |
FT_Pos* min,
|
|
338 |
FT_Pos* max )
|
|
339 |
{
|
|
340 |
/* always compare first and last points */
|
|
341 |
if ( y1 < *min ) *min = y1;
|
|
342 |
else if ( y1 > *max ) *max = y1;
|
|
343 |
|
|
344 |
if ( y4 < *min ) *min = y4;
|
|
345 |
else if ( y4 > *max ) *max = y4;
|
|
346 |
|
|
347 |
/* now, try to see if there are split points here */
|
|
348 |
if ( y1 <= y4 )
|
|
349 |
{
|
|
350 |
/* flat or ascending arc test */
|
|
351 |
if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
|
|
352 |
return;
|
|
353 |
}
|
|
354 |
else /* y1 > y4 */
|
|
355 |
{
|
|
356 |
/* descending arc test */
|
|
357 |
if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
|
|
358 |
return;
|
|
359 |
}
|
|
360 |
|
|
361 |
/* There are some split points. Find them. */
|
|
362 |
{
|
|
363 |
FT_Pos a = y4 - 3*y3 + 3*y2 - y1;
|
|
364 |
FT_Pos b = y3 - 2*y2 + y1;
|
|
365 |
FT_Pos c = y2 - y1;
|
|
366 |
FT_Pos d;
|
|
367 |
FT_Fixed t;
|
|
368 |
|
|
369 |
|
|
370 |
/* We need to solve `ax^2+2bx+c' here, without floating points! */
|
|
371 |
/* The trick is to normalize to a different representation in order */
|
|
372 |
/* to use our 16.16 fixed point routines. */
|
|
373 |
/* */
|
|
374 |
/* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
|
|
375 |
/* These values must fit into a single 16.16 value. */
|
|
376 |
/* */
|
|
377 |
/* We normalize a, b, and c to `8.16' fixed float values to ensure */
|
|
378 |
/* that its product is held in a `16.16' value. */
|
|
379 |
|
|
380 |
{
|
|
381 |
FT_ULong t1, t2;
|
|
382 |
int shift = 0;
|
|
383 |
|
|
384 |
|
|
385 |
/* The following computation is based on the fact that for */
|
|
386 |
/* any value `y', if `n' is the position of the most */
|
|
387 |
/* significant bit of `abs(y)' (starting from 0 for the */
|
|
388 |
/* least significant bit), then `y' is in the range */
|
|
389 |
/* */
|
|
390 |
/* -2^n..2^n-1 */
|
|
391 |
/* */
|
|
392 |
/* We want to shift `a', `b', and `c' concurrently in order */
|
|
393 |
/* to ensure that they all fit in 8.16 values, which maps */
|
|
394 |
/* to the integer range `-2^23..2^23-1'. */
|
|
395 |
/* */
|
|
396 |
/* Necessarily, we need to shift `a', `b', and `c' so that */
|
|
397 |
/* the most significant bit of its absolute values is at */
|
|
398 |
/* _most_ at position 23. */
|
|
399 |
/* */
|
|
400 |
/* We begin by computing `t1' as the bitwise `OR' of the */
|
|
401 |
/* absolute values of `a', `b', `c'. */
|
|
402 |
|
|
403 |
t1 = (FT_ULong)( ( a >= 0 ) ? a : -a );
|
|
404 |
t2 = (FT_ULong)( ( b >= 0 ) ? b : -b );
|
|
405 |
t1 |= t2;
|
|
406 |
t2 = (FT_ULong)( ( c >= 0 ) ? c : -c );
|
|
407 |
t1 |= t2;
|
|
408 |
|
|
409 |
/* Now we can be sure that the most significant bit of `t1' */
|
|
410 |
/* is the most significant bit of either `a', `b', or `c', */
|
|
411 |
/* depending on the greatest integer range of the particular */
|
|
412 |
/* variable. */
|
|
413 |
/* */
|
|
414 |
/* Next, we compute the `shift', by shifting `t1' as many */
|
|
415 |
/* times as necessary to move its MSB to position 23. This */
|
|
416 |
/* corresponds to a value of `t1' that is in the range */
|
|
417 |
/* 0x40_0000..0x7F_FFFF. */
|
|
418 |
/* */
|
|
419 |
/* Finally, we shift `a', `b', and `c' by the same amount. */
|
|
420 |
/* This ensures that all values are now in the range */
|
|
421 |
/* -2^23..2^23, i.e., they are now expressed as 8.16 */
|
|
422 |
/* fixed-float numbers. This also means that we are using */
|
|
423 |
/* 24 bits of precision to compute the zeros, independently */
|
|
424 |
/* of the range of the original polynomial coefficients. */
|
|
425 |
/* */
|
|
426 |
/* This algorithm should ensure reasonably accurate values */
|
|
427 |
/* for the zeros. Note that they are only expressed with */
|
|
428 |
/* 16 bits when computing the extrema (the zeros need to */
|
|
429 |
/* be in 0..1 exclusive to be considered part of the arc). */
|
|
430 |
|
|
431 |
if ( t1 == 0 ) /* all coefficients are 0! */
|
|
432 |
return;
|
|
433 |
|
|
434 |
if ( t1 > 0x7FFFFFUL )
|
|
435 |
{
|
|
436 |
do
|
|
437 |
{
|
|
438 |
shift++;
|
|
439 |
t1 >>= 1;
|
|
440 |
|
|
441 |
} while ( t1 > 0x7FFFFFUL );
|
|
442 |
|
|
443 |
/* this loses some bits of precision, but we use 24 of them */
|
|
444 |
/* for the computation anyway */
|
|
445 |
a >>= shift;
|
|
446 |
b >>= shift;
|
|
447 |
c >>= shift;
|
|
448 |
}
|
|
449 |
else if ( t1 < 0x400000UL )
|
|
450 |
{
|
|
451 |
do
|
|
452 |
{
|
|
453 |
shift++;
|
|
454 |
t1 <<= 1;
|
|
455 |
|
|
456 |
} while ( t1 < 0x400000UL );
|
|
457 |
|
|
458 |
a <<= shift;
|
|
459 |
b <<= shift;
|
|
460 |
c <<= shift;
|
|
461 |
}
|
|
462 |
}
|
|
463 |
|
|
464 |
/* handle a == 0 */
|
|
465 |
if ( a == 0 )
|
|
466 |
{
|
|
467 |
if ( b != 0 )
|
|
468 |
{
|
|
469 |
t = - FT_DivFix( c, b ) / 2;
|
|
470 |
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
471 |
}
|
|
472 |
}
|
|
473 |
else
|
|
474 |
{
|
|
475 |
/* solve the equation now */
|
|
476 |
d = FT_MulFix( b, b ) - FT_MulFix( a, c );
|
|
477 |
if ( d < 0 )
|
|
478 |
return;
|
|
479 |
|
|
480 |
if ( d == 0 )
|
|
481 |
{
|
|
482 |
/* there is a single split point at -b/a */
|
|
483 |
t = - FT_DivFix( b, a );
|
|
484 |
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
485 |
}
|
|
486 |
else
|
|
487 |
{
|
|
488 |
/* there are two solutions; we need to filter them */
|
|
489 |
d = FT_SqrtFixed( (FT_Int32)d );
|
|
490 |
t = - FT_DivFix( b - d, a );
|
|
491 |
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
492 |
|
|
493 |
t = - FT_DivFix( b + d, a );
|
|
494 |
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
495 |
}
|
|
496 |
}
|
|
497 |
}
|
|
498 |
}
|
|
499 |
|
|
500 |
#endif
|
|
501 |
|
|
502 |
|
|
503 |
/*************************************************************************/
|
|
504 |
/* */
|
|
505 |
/* <Function> */
|
|
506 |
/* BBox_Cubic_To */
|
|
507 |
/* */
|
|
508 |
/* <Description> */
|
|
509 |
/* This function is used as a `cubic_to' emitter during */
|
|
510 |
/* FT_Outline_Decompose(). It checks a cubic Bezier curve with the */
|
|
511 |
/* current bounding box, and computes its extrema if necessary to */
|
|
512 |
/* update it. */
|
|
513 |
/* */
|
|
514 |
/* <Input> */
|
|
515 |
/* control1 :: A pointer to the first control point. */
|
|
516 |
/* */
|
|
517 |
/* control2 :: A pointer to the second control point. */
|
|
518 |
/* */
|
|
519 |
/* to :: A pointer to the destination vector. */
|
|
520 |
/* */
|
|
521 |
/* <InOut> */
|
|
522 |
/* user :: The address of the current walk context. */
|
|
523 |
/* */
|
|
524 |
/* <Return> */
|
|
525 |
/* Always 0. Needed for the interface only. */
|
|
526 |
/* */
|
|
527 |
/* <Note> */
|
|
528 |
/* In the case of a non-monotonous arc, we don't compute directly */
|
|
529 |
/* extremum coordinates, we subdivide instead. */
|
|
530 |
/* */
|
|
531 |
static int
|
|
532 |
BBox_Cubic_To( FT_Vector* control1,
|
|
533 |
FT_Vector* control2,
|
|
534 |
FT_Vector* to,
|
|
535 |
TBBox_Rec* user )
|
|
536 |
{
|
|
537 |
/* we don't need to check `to' since it is always an `on' point, thus */
|
|
538 |
/* within the bbox */
|
|
539 |
|
|
540 |
if ( CHECK_X( control1, user->bbox ) ||
|
|
541 |
CHECK_X( control2, user->bbox ) )
|
|
542 |
BBox_Cubic_Check( user->last.x,
|
|
543 |
control1->x,
|
|
544 |
control2->x,
|
|
545 |
to->x,
|
|
546 |
&user->bbox.xMin,
|
|
547 |
&user->bbox.xMax );
|
|
548 |
|
|
549 |
if ( CHECK_Y( control1, user->bbox ) ||
|
|
550 |
CHECK_Y( control2, user->bbox ) )
|
|
551 |
BBox_Cubic_Check( user->last.y,
|
|
552 |
control1->y,
|
|
553 |
control2->y,
|
|
554 |
to->y,
|
|
555 |
&user->bbox.yMin,
|
|
556 |
&user->bbox.yMax );
|
|
557 |
|
|
558 |
user->last = *to;
|
|
559 |
|
|
560 |
return 0;
|
|
561 |
}
|
|
562 |
|
|
563 |
FT_DEFINE_OUTLINE_FUNCS(bbox_interface,
|
|
564 |
(FT_Outline_MoveTo_Func) BBox_Move_To,
|
|
565 |
(FT_Outline_LineTo_Func) BBox_Move_To,
|
|
566 |
(FT_Outline_ConicTo_Func)BBox_Conic_To,
|
|
567 |
(FT_Outline_CubicTo_Func)BBox_Cubic_To,
|
|
568 |
0, 0
|
|
569 |
)
|
|
570 |
|
|
571 |
/* documentation is in ftbbox.h */
|
|
572 |
|
|
573 |
FT_EXPORT_DEF( FT_Error )
|
|
574 |
FT_Outline_Get_BBox( FT_Outline* outline,
|
|
575 |
FT_BBox *abbox )
|
|
576 |
{
|
|
577 |
FT_BBox cbox;
|
|
578 |
FT_BBox bbox;
|
|
579 |
FT_Vector* vec;
|
|
580 |
FT_UShort n;
|
|
581 |
|
|
582 |
|
|
583 |
if ( !abbox )
|
|
584 |
return FT_Err_Invalid_Argument;
|
|
585 |
|
|
586 |
if ( !outline )
|
|
587 |
return FT_Err_Invalid_Outline;
|
|
588 |
|
|
589 |
/* if outline is empty, return (0,0,0,0) */
|
|
590 |
if ( outline->n_points == 0 || outline->n_contours <= 0 )
|
|
591 |
{
|
|
592 |
abbox->xMin = abbox->xMax = 0;
|
|
593 |
abbox->yMin = abbox->yMax = 0;
|
|
594 |
return 0;
|
|
595 |
}
|
|
596 |
|
|
597 |
/* We compute the control box as well as the bounding box of */
|
|
598 |
/* all `on' points in the outline. Then, if the two boxes */
|
|
599 |
/* coincide, we exit immediately. */
|
|
600 |
|
|
601 |
vec = outline->points;
|
|
602 |
bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x;
|
|
603 |
bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y;
|
|
604 |
vec++;
|
|
605 |
|
|
606 |
for ( n = 1; n < outline->n_points; n++ )
|
|
607 |
{
|
|
608 |
FT_Pos x = vec->x;
|
|
609 |
FT_Pos y = vec->y;
|
|
610 |
|
|
611 |
|
|
612 |
/* update control box */
|
|
613 |
if ( x < cbox.xMin ) cbox.xMin = x;
|
|
614 |
if ( x > cbox.xMax ) cbox.xMax = x;
|
|
615 |
|
|
616 |
if ( y < cbox.yMin ) cbox.yMin = y;
|
|
617 |
if ( y > cbox.yMax ) cbox.yMax = y;
|
|
618 |
|
|
619 |
if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON )
|
|
620 |
{
|
|
621 |
/* update bbox for `on' points only */
|
|
622 |
if ( x < bbox.xMin ) bbox.xMin = x;
|
|
623 |
if ( x > bbox.xMax ) bbox.xMax = x;
|
|
624 |
|
|
625 |
if ( y < bbox.yMin ) bbox.yMin = y;
|
|
626 |
if ( y > bbox.yMax ) bbox.yMax = y;
|
|
627 |
}
|
|
628 |
|
|
629 |
vec++;
|
|
630 |
}
|
|
631 |
|
|
632 |
/* test two boxes for equality */
|
|
633 |
if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax ||
|
|
634 |
cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax )
|
|
635 |
{
|
|
636 |
/* the two boxes are different, now walk over the outline to */
|
|
637 |
/* get the Bezier arc extrema. */
|
|
638 |
|
|
639 |
FT_Error error;
|
|
640 |
TBBox_Rec user;
|
|
641 |
|
|
642 |
#ifdef FT_CONFIG_OPTION_PIC
|
|
643 |
FT_Outline_Funcs bbox_interface;
|
|
644 |
Init_Class_bbox_interface(&bbox_interface);
|
|
645 |
#endif
|
|
646 |
|
|
647 |
user.bbox = bbox;
|
|
648 |
|
|
649 |
error = FT_Outline_Decompose( outline, &bbox_interface, &user );
|
|
650 |
if ( error )
|
|
651 |
return error;
|
|
652 |
|
|
653 |
*abbox = user.bbox;
|
|
654 |
}
|
|
655 |
else
|
|
656 |
*abbox = bbox;
|
|
657 |
|
|
658 |
return FT_Err_Ok;
|
|
659 |
}
|
|
660 |
|
|
661 |
|
|
662 |
/* END */
|